笛卡尔的思维法则(数学思维的规范)
法则一 研究的目的应该是将思维引向对它面前出现的一切材料作出 有充分根据的正确判断的清晰理论. 法则二 只有思维能力看上去能够对它们获得确实而无容质疑的知识 的那些对象,才是该当惹起注意的. 法则三 在提出要考察的那些主题中,我们的探究,既不应当指向别人 已经想过的东西,也不应当指向自己猜测的东西,而是应当针对我们能 够清清楚楚观察到的并且确实能追朔根源的东西;因为用其他任何方法是得不到知识的. 法则四 为了发现真理,需要有方法. 法则五 方法就是把应注意的事物进行适当的整理和排列.如果想 在它们(对象)中发现任何真理,我们的慧眼必须指向它们.如果能把 复杂的,含糊不清的命题逐步化为比较简单的命题,然后对于所有那 些绝对简单的命题的直觉理解出发,运用非常相似的步骤,努力追溯 到一切其他(命题)的知识,那么,就确切地履行了这个方法. 法则六 当一个问题被提出来以后,我们应当立即看一看,首先研究 另外一些问题是否更为有利,另外是哪些问题,以及按什么顺序进行 研究. 法则七 如果希望科学日臻完善,那么在考虑中已经提升为目标的材料, 就必须全部经过连续而不间断的思维活动的细密审查;它们也必须被包括 在即适当又有条理的枚举细目之中. 法则八 如果在所考察的那些情况中,我们在这个序列中走到了这样一 步:理解力确实不能对它有一直觉的认识,那么,就必须在这里止住;必须 不再企图考察随后的是什么;否则,就会不必要地浪费自己的精力. 法则九 必须把注意力全部集中到最重要的和最容易掌握的事物上,而且 要长时间持续不断的对它们仔细考虑,直到我们习惯于清晰的看待真理. 法则十 为了可能获得聪明与智慧,心智应当在那些别人已经发现答案 的探究中经受磨练;而且心智甚至还应当系统地细查人们最不足道的发 明创造,虽然这些发明创照应当是在得到说明或解释的规律中提出来的. 法则十一 如果在我们已经直觉的认识到若干简单的事实真相之后,我们 希望根据它们做出任何推论,有效的方法就是,使这些事实处于连续不 间断的思维活动中,仔细思量它们彼此之间的关系,并且只要同时可能 的话,就把这些命题中若干命题明确的一并加以理解.因为这种方法会 使我们的知识更加可靠,并使我们的思维能力大大提高. 法则十二 最后,必须运用有助于理解的想象,感觉和记忆,首先为了对简 单的命题有明确的直觉;在一定程度上也为了把待证明的命题同已经知道的命题加以比较,从而又可能认识它们的真理;在一定程度上也为了发现那些事实真相,它们应当是彼此互相加以比较,以至人们在勤奋中训练自己的任何东西,并使之没有任何短缺. 法则十三 一旦"问题"得到完满的理解,就应把它从每个对它的意义说来 是多余的概念中解脱出来,并以的最简单的术语来表述它,并且依靠一 种细目枚举把它分解为不同的部分,撇开这种分解,分析就不能细致的 进行. 法则十四 同样的法则也可运用到物体的实在广延性上.用几何图形去表 达这类事情是极为有利的,因为没有什么东西比几何图形更容易进入人 们的思维. 法则十五 同样,画这些图形并把它们展示给外部的感官往往是有帮助的, 这样才能使我们的注意力容易持续不断的坚定. 法则十六 当遇到不需要我们现在就注意的情况,即使这些情况对作结论是 必须的,最好还是用高度省略的符号来表示它们,而不是用复杂的图形来表示它们. 这样做,一方面预防由于记忆的缺陷而产生的差错;另一方面预防思想不专注 ,在 注意到别的推理时会引起一种要把这些情况放在心上的努力. 法则十七 在一个问题提出来讨论时,应当以最自然的方式来考察问题,把 它当作是已解决了的,并以适当的次序使所有由条件规定的未知量和已知量之间所必须保持的关系具体化. 法则十八 为此目的,只需要有加减乘除四则运算.其中乘法和除法在这里 往往用不着,这是为了避免预料不到的麻烦,也因为在以后阶段上处理它们比较容 易些. 法则十九 为了直截了当的处理问题,运用这种推理方法,就必须把未知项 看作是已知的,有多少未知项就找出多少量值;分化出一部分条件,根据这 部分条件可以把同一个量用两种不同的方法表示,并从而得到未知量之间 的一个方程.照此做下去,最后就可把条件分成为与未知量个数一样多的 部分,并从而得到与未知量个数相等的一个方程组. 法则二十 得到这些方程之后,我们必须继续进行我们曾忽略的那些运算. 法则二十一 把这组方程简化为一个方程. |