Python数据分析从入门到进阶:手把手教你处理分类型数据(含详细代码)

引言

在构建模型时,我们经常遇见一些分类型数据,此时需要对这些分类型数据进行相应转换。本章介绍如何使用python处理分类型数据,首先分类型数据主要包括以下两种。

  • 本身没有顺序的称为nominal,也称为名义变量 例如性别
  • 本身具有顺序的称为ordinal,也称为定序变量 例如年纪:老年、中年、青年

如果我们不对分类型数据进行处理的话,那么无法将它们直接构建模型,在机器学习中,处理分类型数据最常用的方法是进行one-hot(独热编码)

💮1. 对名义变量进行转换

使用sklearnLabelBinarizer对这些分类数据进行编码,具体代码如下

# 导入相关库
import numpy as np
from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer

# 创建模拟数据
feature = np.array([['Texas'],
                    ['California'],
                    ['Texas'],
                    ['Delaware'],
                    ['Texas']])

# 创建one-hot编码器 也就是将其以矩阵0 1 来表示,
one_hot = LabelBinarizer()

classes = one_hot.fit_transform(feature)

classes

array([[0, 0, 1],
       [1, 0, 0],
       [0, 0, 1],
       [0, 1, 0],
       [0, 0, 1]])

如上图所示,001表示Texas,010表示Delaware

使用classes_查看分类

one_hot.classes_

array(['California', 'Delaware', 'Texas'], dtype='<U10')

# 对one_hot 进行逆编码转换
one_hot.inverse_transform(classes)

array(['Texas', 'California', 'Texas', 'Delaware', 'Texas'], dtype='<U10')

import pandas as pd

使用pandas来进行one-hot编码

pd.get_dummies(feature[:,0])

.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }

CaliforniaDelawareTexas
0001
1100
2001
3010
4001
# sklearn 还可以处理每个观测值有多个分类的情况
multiclass_feature = [('Texas', 'Florida'),
                      ('California', 'Alabama'),
                      ('Texas', 'Florida'),
                      ('Delware', 'Florida'),
                      ('Texas', 'Alabama')]

one_hot_multiclass = MultiLabelBinarizer()

one_hot_multiclass.fit_transform(multiclass_feature)

array([[0, 0, 0, 1, 1],
       [1, 1, 0, 0, 0],
       [0, 0, 0, 1, 1],
       [0, 0, 1, 1, 0],
       [1, 0, 0, 0, 1]])

one_hot_multiclass.classes_

array(['Alabama', 'California', 'Delware', 'Florida', 'Texas'],
      dtype=object)

🏵️2. 对ordinal分类特征编码

对于定序类变量,这些变量的取值是有一定顺序的,此时,我们需要指定对应的编码

dataframe = pd.DataFrame({'Score': ['Low', 'Low', 'Medium', 'Medium', 'High']})

scale_mapper = {'Low':1,
                'Medium':2,
                'High':3}

dataframe['Score'].replace(scale_mapper)

0    1
1    1
2    2
3    2
4    3
Name: Score, dtype: int64

其中:

  • 1-Low
  • 2-Medium
  • 3-High

🌺3. 对特征字典编码

有的时候我们还会遇见一些特征字典,例如颜色的RGB值,如下所示

data_dict = [{'Red':2, 'Blue':4},
             {'Red':2, 'Blue':3},
             {'Red':1, 'Yellow':2},
             {'Red':2, 'Yellow':2}]
data_dict

[{'Red': 2, 'Blue': 4}, {'Red': 2, 'Blue': 3}, {'Red': 1, 'Yellow': 2}, {'Red': 2, 'Yellow': 2}]

此时的data_dict就是一个特征字典,下面我们看如何使用DictVectorizer将其进行编码

from sklearn.feature_extraction import DictVectorizer

dictvectorizer = DictVectorizer(sparse=False)# 默认的是会返回稀疏矩阵,此时由于矩阵比较小,我们设置强制返回稠密矩阵

features = dictvectorizer.fit_transform(data_dict)

features

array([[4., 2., 0.],
       [3., 2., 0.],
       [0., 1., 2.],
       [0., 2., 2.]])

第一列表示Blue的值,第二列表示Red的值,第三列表示Yellow的值

feature_names = dictvectorizer.get_feature_names()
feature_names

['Blue', 'Red', 'Yellow']

pd.DataFrame(features, columns=feature_names)

.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }

BlueRedYellow
04.02.00.0
13.02.00.0
20.01.02.0
30.02.02.0

🌻4. 填充缺失的分类值

==方法一==: 当分类特征中包含缺失值,我们可以用预测值来填充,下面演示如何使用使用KNN分类器来进行填充

# 导入相关库
import numpy as np
from sklearn.neighbors import KNeighborsClassifier

# 导入数据
X = np.array([[0, 2.10, 1.45],
              [1, 1.18, 1.33],
              [0, 1.22, 1.27],
              [1, -0.21, -1.19]])

# 第一列为nan
X_with_nan = np.array([[np.nan, 0.87, 1.31],
                       [np.nan, -0.67, -0.22]])

# 训练knn分类器
clf = KNeighborsClassifier(3, weights='distance')
train_model = clf.fit(X[:, 1:], X[:,0])

# 预测缺失值的分类
imputed_values = train_model.predict(X_with_nan[:,1:])

# 将所预测的分类与原来的特征连接
X_with_imputed = np.hstack((imputed_values.reshape((2,1)), X_with_nan[:,1:]))

X_with_imputed

array([[ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])

np.vstack((X, X_with_imputed))

array([[ 0.  ,  2.1 ,  1.45],
       [ 1.  ,  1.18,  1.33],
       [ 0.  ,  1.22,  1.27],
       [ 1.  , -0.21, -1.19],
       [ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])

这种方法是通过将其他特征作为特征矩阵来进行预测,从而求得缺失值

==方法二==:选取特征中出现最多的特征值来进行填充,使用simpleimputer

# 导入相关库
from sklearn.impute import SimpleImputer

X_complete = np.vstack((X,X_with_imputed))

imputet = SimpleImputer(strategy='most_frequent')

imputet.fit_transform(X_complete)

array([[ 0.  ,  2.1 ,  1.45],
       [ 1.  ,  1.18,  1.33],
       [ 0.  ,  1.22,  1.27],
       [ 1.  , -0.21, -1.19],
       [ 0.  ,  0.87,  1.31],
       [ 1.  , -0.67, -0.22]])

方法二在处理很多数据的时候可能会方便一些,方法一使用KNN预测的效果更好

🌼5. 处理不均衡分类

  • 收集更多的数据
  • 改变评估模型的衡量标准
  • 使用嵌入分类权重参数的模型

使用鸢(yuan)尾花 数据集 ,默认每种类型都有五十个数据,这里我们删除山鸢尾的四十个数据

# 首先导入相关数据
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier#随机森林分类器

# 加载iris数据集
iris = load_iris()

features = iris.data

target = iris.target
target

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

# 移除前40个features
features = features[40:, :]
target = target[40:]

# 转换成一个二元来观察观测值是否为0
target = np.where((target == 0), 0, 1)

target

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

对于这种不均衡的数据,我们可以选择在训练时对其进行加权处理,我们在这里使用随机森林分类,通过weights参数来进行处理权重

# 创建权重
weights = {0: .9, 1:0.1}

# 创建一个带权重的随机森林分类器
RandomForestClassifier(class_weight=weights)

RandomForestClassifier(class_weight={0: 0.9, 1: 0.1})

还可以传入balanced参数,自动创建于分类的频数成反比的权重

# 训练一个带均衡分类权重的随机森林分类器
RandomForestClassifier(class_weight='balanced')

RandomForestClassifier(class_weight='balanced')

🌷6. 重采样

处理不均衡分类数据的另一个思路是使用重采样方法,对占多数的使用下采样,对占少数部分的使用上采样,在下采样中,从占多数的分类中取出观测值,创建一个数量与占少数的分类相同的子集

下面对鸢尾花数据进行操作

# 给每个分类的观察值标签
i_class0 = np.where(target==0)[0]
i_class1 = np.where(target==1)[0]

# 计算每个分类值的观察值数量
n_class0 = len(i_class0)
n_class1 = len(i_class1)

# 对于每个分类为0的观察值,从分类为一的数据进行无放回的随机采样
i_class1_downsampled = np.random.choice(i_class1, size=n_class0, replace=False)

np.hstack((target[i_class0], target[i_class1_downsampled]))

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

# 将分类为0和分类为1的特征矩阵连接起来
np.vstack((features[i_class0,:], features[i_class1_downsampled, :]))[0:5]

array([[5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4]])

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值