- 博客(132)
- 收藏
- 关注
原创 pandas文本拆分两两组合用于频率统计
关键指令:df2['组合拆分']=df2['组合'].apply(lambda x:list(combinations(list(x),2)))由于格式原因,可能需要进行一些替换调整,跟源数据中的部分数据合并在一起,进行最终的频率排名统计。源文件如下,需要对三个以上的组合文本进行两两统计,最终找出组合频率的排名。
2024-10-14 10:41:39 178
原创 pandas个性化求和及报错处理
tb.loc[index=0,'riqi'].values出来的是一个只有一个数据的series,需要加上【0】来引用第一个数据,即把【】去掉,再去用between或>=,
2024-07-12 15:24:35 276
原创 Excel数据截取及合并多行多列数据
公式一:=RIGHT(A2,LEN(A2)-FINDB(")",A2))公式二:=PHONETIC(C2:D19)
2024-07-04 16:13:25 364
原创 主副坐标轴作图(即双坐标轴)
Unnamed: 0 生均课消 课消总量。3 最终标值 5.01 204523.64。由于两者重合,趋势一致,所以重合。
2024-05-28 11:51:55 260
原创 条件格式实例
86 李子色 #EAADEA 87 石英色 #D9D9F3 88 艳蓝色 #5959AB。10 巧克力色 #5C3317 11 蓝紫色 #9F5F9F 12 黄铜色 #B5A642。47 浅蓝色 #C0D9D9 48 浅灰色 #A8A8A8 49 浅钢蓝色 #8F8FBD。92 半甜巧克力色#6B4226 93 赭色 #8E6B23 94 银色 #E6E8FA。
2024-04-26 15:17:18 551 2
原创 pandas日常使用大全
中国 美国 英国 德国 法国 总数。中国 美国 英国 德国 法国 总数。方差 标准差 均值 变异系数。中国 美国 英国 德国 法国 总数。中国 美国 英国 德国 法国。Name: 总数, dtype: float64。Name: 中国, dtype: float64。计算75%的分位数,Q3,上四分位数。如果存在多个众数,则求他们的均值。
2024-03-07 12:08:34 1148
原创 pandas行列求众数及按列去重
df2.drop_duplicates(subset=['学生id'],keep='first',inplace=True)按列去重,保留第一条记录;
2024-03-04 15:06:36 492
原创 抠图换背景
注释在代码中有标记,其中用微信查看背景色,十六进制转换RGB方法为,RGB分别对应#后边的两位字符,从右往左第一位字符+第二位字符*16即可转化,如76=6+7*16=118,82=2+8*16=130,de=14+13*16=222(十六进制分别对应0~9,ABCDEF,A表示10,F表示15)如上,即可实现抠图换背景。
2024-02-01 17:51:06 455
原创 线性回归实例
逻辑回归也被称为对数几率回归,实际上是用线性回归解决分类问题的分类模型(在线性回归的基础上,加了一层sigmoid函数,将线性函数变为非线性函数),sigmoid函数的形状呈‘S’形,它能将任意实数映射到0~1之间的某个概率值上;补充2:(监督学习中还有一种分类问题,用来预测离散值输出,如观察肿瘤大小,来判断是良性合适恶性,输出只有两种:【0】良性,【1】恶性)补充:(这是一个监督学习,且是回归问题,回归问题指的是预测一个具体的数据输出,即房价)逻辑回归一般用户分类预测,预测结果一般为某类可能的概率。
2024-01-11 18:26:44 931
原创 python报错A value is trying to be set on a copy of a slice
加入.copy()即可避免该报错提示。
2023-12-22 18:45:50 632
原创 进度校验多维度
df11=pd.DataFrame(df1.iloc[:,[ i for i in range(79)]+[85,87,89,94,93]])选取制定列。
2023-12-12 16:47:35 368
原创 pandas空格及网页空格符NBSP替换处理
截图中代码为python展示代码,由于网页空格符和常规空格符看起来大致相同,但却不能用常规空格替换解决。
2023-12-07 15:29:01 541
原创 合并多个excel文件的第一个sheet至一个excel的不同sheet
把同一目录下的多个.xlsx文件,取第一个sheet,合并至一个新excel文件的不同sheet,并以原excel文件名称命名新的sheet名称;
2023-12-01 18:36:38 513
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人