http://poj.org/problem?id=1284
题意:对于奇素数p,假设存在一个x(1<x<p),(x^i)%p两两不同(0<i<p),且解集等于{1,2....,p-1}。
称x是p的一个原根。
输入p问p的原根有多少个。
直接枚举的,TLE了。
看到discuss里面说是求原根。答案直接是phi[p-1]。百度百科上直接就给出答案了。m有原根的充要条件是m= 1,2,4,p,2p,p^n,当中p是奇素数,n是随意正整数。它所含原根的个数是phi[phi[m]],由于phi[m]=m-1,所以答案是phi[m-1]。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
using namespace std;
const int maxn = 65540;
int flag[maxn];
int prime[maxn];
int phi[maxn];
void init()
{
memset(flag,0,sizeof(flag));
phi[1] = 1;
prime[0] = 0;
for(int i = 2; i < maxn; i++)
{
if(flag[i] == 0)
{
phi[i] = i-1;
prime[++prime[0]] = i;
}
for(int j = 1; j <= prime[0]&&prime[j]*i<maxn; j++)
{
flag[prime[j]*i] = 1;
if(i%prime[j] == 0)
phi[i*prime[j]] = phi[i] * prime[j];
else
phi[i*prime[j]] = phi[i] * (prime[j]-1);
}
}
}
int p;
int main()
{
init();
while(scanf("%d",&p) != EOF)
{
printf("%d\n",phi[p-1]);
}
return 0;
}