poj 1284 Primitive Roots 【原根】【数论】

该博客探讨了POJ 1284题目的解决方案,主要涉及数论中的原根概念。文章解释了如何确定一个质数的原根个数,并通过实例展示了如何计算模m的原根,例如模7的原根有3和5,它们的幂次模7的结果符合欧拉函数的性质。
摘要由CSDN通过智能技术生成

题目链接 : 传送门

题目大意: 求一个质数的原根个数。

先普及一下原根的定义:

设m是正整数,a是整数,若a模m的阶等于euler(m),则称a为模m的一个原根。

eg: m=7,euler(7) =  6(1,2,3,4,5,6)  

则:

  • 1   1^(n)mod7=1! = 6
  • 2   2^(n)mod7={2 4 1}!=6 
  • 3   3^(n)mod7={3,2,6,4,5,1}==6   故3是模7的原根
  • 4   4^(n)mod7={4,2,1}!=6
  • 5   5^(n)mod7={5,4,6,2,3,1}==6   故5是模7的原根
  • 6   6^(n)mod7={6,1}!=6    
故7的原根有两个。
也可以这样来想: a^(p-1)mod(p)&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值