近年来,随着科技的飞速发展,金融风险控制领域也在悄然发生变革。其中,大语言模型(LLM)无疑是推动这一变革的重要力量。作为一项具备理解、生成、多模态融合和推理决策能力的技术,LLM 正逐步渗透到金融风控的各个环节,帮助企业在复杂的风险环境中保持前瞻性和智能化的应对能力。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
今天,我们来聊聊 LLM 在金融风控领域的核心应用与趋势,以及为什么要分阶段应用 LLM 的不同能力。
一、LLM 进化中的三大核心能力
大语言模型的应用能力目前可以划分为三个关键能力:理解与生成、多模态融合与推理决策。
1、 理解与生成能力:
LLM 在文本的理解与生成方面已经达到成熟水平。它不仅能够精准理解大量的非结构化文本数据,还可以生成高质量的文本内容。
过去,金融风控在接入 AI 时,更多依赖的是关键词匹配和简单的规则引擎。现在,LLM 就像一位不知疲倦的“情报分析师”,能够快速理解各种文本的深层含义、情感倾向和上下文,更精准地识别潜在的风险,例如市场情绪的突变、公司负面新闻的爆发等。这已经超越了简单的关键词匹配,真正实现了对风险信息的深度挖掘。
应用场景:
1.1 、舆情监控与预警:
LLM 可以实时分析社交媒体、新闻报道等非结构化数据,帮助企业快速识别潜在的市场或品牌风险。
1.2、客户投诉智能分析:
对于金融机构,成千上万的客户投诉往往隐藏着潜在的系统性问题,LLM 可以快速分类和提炼投诉的核心内容,帮助企业找到共性问题并迅速应对。
1.3、合同风险条款识别:
在合同审阅过程中,LLM 能够快速识别高风险条款,减少法律漏洞。
1.4、“智能报告生成器”提升效率:
风控人员不再需要花费大量时间撰写各种报告。LLM 能够根据数据分析结果自动生成高质量的风险评估报告、合规报告等,不仅提高了效率,也保证了报告的规范性和一致性。
通过理解与生成能力,LLM 已经解决了文本数据的海量处理与分析瓶颈,极大提升了效率,并降低了人工审阅的风险。
2、多模态融合能力
进入多模态融合阶段,LLM 能够处理不仅限于文本的数据,进一步扩展到图像、视频、音频等模态信息。这使得金融机构在风控中能够更加全面地感知复杂的风险信息。
应用场景:
2.1、 智能身份核验:
金融机构可以通过 LLM 融合人脸识别、证件验证和语音分析,实现更安全的身份核验流程。
可预计很快传统的照片上传方式后快速进化为视频验证方式,LLM 的加入,不仅能读取必要的身份信息,还能从视频中捕捉到更多维度的人类行为和情绪等信息。
2.2、保险理赔反欺诈:
当面对保险理赔时,LLM 可以综合分析文本描述、图片和视频证据,从中识别潜在的欺诈行为。
2.3、远程客户服务风险识别:
在远程客服中,LLM 能通过语音、视频、文本的多模态分析,识别客户的异常行为或潜在风险。
3、推理与决策能力
如果说理解和多模态是感知信息,那么推理能力就是基于信息进行深度思考和决策,它不仅需要从海量信息中提取相关线索,还必须结合复杂的背景进行判断,最后做出合适的决策。在金融风控中,推理能力的关键在于判断风险的潜在传导路径,以及预测未来可能发生的风险事件。
如果说LLM 的推理能力是 “思考的能力”,那Agent 是 “思考后行动的能力”。Agent 技术的兴起正在加速 LLM 推理能力在金融领域的落地。Agent 是一种具有自主行为的智能系统,它们能够自动处理金融系统中复杂的风险管理任务。通过结合 LLM 的推理和决策能力,Agent 可以根据输入的数据自动分析和做出决策,从而降低金融机构对人工干预的依赖,提升效率并减少人为错误。
Agent 是一种能够自主执行复杂任务的智能体,它能够与银行的内部数据系统和外部信息源相结合,利用 LLM 的推理能力进行决策。与传统风控系统相比,Agent 的优势在于能够实时分析大量数据、进行自动化的风险检测和决策,并且在面对动态市场环境时具有更强的灵活性。例如,传统风控系统往往依赖固定的规则和人工介入,而 Agent 则能够根据实时数据自主调整规则和策略,发现新兴风险点,并快速采取行动,减少金融风险的发生概率。
应用场景
3.1、更深层次的风险关联挖掘:
Agent 可以连接企业工商信息、交易数据、新闻舆情等多个数据源,利用 LLM 的推理能力,自动分析企业之间的股权关系、供应链关系、资金流向等,发现隐藏的风险关联,例如识别出复杂的洗钱网络或潜在的交叉违约风险。
3.2、更智能的异常检测与根因分析:
Agent 可以接入交易系统、日志系统等,利用 LLM 理解事件描述、系统报错信息,结合交易数据进行推理,更准确地判断交易异常的原因,并提出相应的处置建议。
3.3、 基于知识图谱的企业风险传导分析
通过构建企业知识图谱,LLM 能够推断出某些企业行为对市场或行业的潜在风险传导效应。
3.4、更主动的风险应对:
在特定场景中,LLM 可以通过 Agent 技术实时监控市场并做出主动的风险管理决策,如执行预警或采取相应的风险缓释措施。
二、如何稳步切入?
从2025年AI发展趋势看,多模态融合能力的成熟时间和推理决策能力是并行的,在引入 LLM 技术时,可以根据不同阶段的能力进行分步布局:
1、现阶段可落地的:
利用 LLM 的理解与生成能力,解决非结构化数据分析问题,提高合规报告和客户分析的效率。
场景的选择应重点放在数据量大、人工处理耗时长、但风险相对可控的领域。例如,舆情监控涉及海量的非结构化数据,通过 LLM 能快速分析和提取重要信息。客户投诉分析则可以帮助识别潜在的服务或产品缺陷,并通过自动分类和情感分析提高效率。合同审核过程则能借助 LLM 自动识别高风险条款,减少法律合规方面的风险。
在这些选定的场景中,可以通过小范围的试点项目来验证 LLM 的有效性和可行性。试点结束后,通过对比人工处理结果与 LLM 自动化处理的效率和准确度,可以初步验证模型的有效性。对于表现出较好效果的模型,可以进一步扩大应用范围。对于尚有不足的部分,则应及时进行模型优化,例如对识别错误较多的场景进行专项分析和调优。此过程应遵循逐步迭代优化的策略,逐步扩大 LLM 应用的场景,确保在大规模部署前,模型的稳定性和准确性达到要求。
2、紧密关注和跟踪:
多模态融合与推理决策能力预计将在2025年共同达到成熟,可以让金融机构逐步实现身份核验、反欺诈、异常分析等领域的全面智能化。
金融机构应尽早开始积累图像、视频、音频等多模态数据,并系统性地研究和探索不同模态数据融合的技术和方法。同时,Agent技术的研究与应用应当被提上议程,特别是在风险关联挖掘、异常检测和根因分析等领域进行试点项目,确保技术的可行性和可扩展性。
三、面临的挑战与未来展望
尽管 LLM 在金融风控中的潜力巨大,但它依然面临一些挑战。多模态信息的融合技术、推理决策能力仍在不断进化,模型的可解释性、鲁棒性和公平性问题需要金融机构保持关注。此外,数据隐私和安全性也是多模态数据处理中的关键问题。
未来,随着 LLM 技术的进一步成熟,Agent 在金融风控中的应用将进一步扩大,并可能取代传统风控流程的某些环节。例如,在高度自动化的风险管理系统中,Agent 可以全权负责日常的风险监控、识别和响应,极大减少了对人工的依赖。这不仅能够提升风控的效率,还能为金融机构提供更加实时、精准的决策支持。未来,金融风控将迈入一个“智核时代”,风险管理将更加智能化、主动化,推动金融行业实现更高水平的风险防控与管理。金融机构如果能够抓住这一技术变革的契机,将在风控体系中占据更加主动的位置,实现更加精准、高效的风险管理。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓