若干结论和定理(持续更新)

 gcd(x- 1 , x- 1) = xgcd(a , b) - 1  (x>1,a,b>0)   (HDU 2685)

gcd(fib[ m ] , fib[ n ]) = fib[ gcd(m , n) ]    fib是斐波那契数列

gcd(fib[ m ] , fib[ n ]) = fib[ gcd(m , n) ]

lcm(ka , kb) = k * lcm(a , b)

lcm(a/b , c/d) = lcm(a , c) / gcd(b , d)

a > b , gcd(a , b)==1 , 则gcd(am - bm , an - bn) = agcd(m , n) - bgcd(m , n)

设G = gcd( C1n , C2n ,·········Cnn )  则G的值为:(HDU2582)

  • n为素数:本身
  • n有多个素因子:1
  • n只有一个素因子:该因子

  一个数的所有因子的欧拉函数之和等于这个数本身

最小生成树中的最大边权为所有生成树中最大边权的最小值(所有生成树中最大边权的最小值在MST上)

有向无环图的生成树个数等于入度非零的节点的入度积

威尔逊定理:p为素数  等价于  ( p -1 )! ≡ -1 ( mod p )   即p | (p-1)!+1  (HDU 6608)

费马小定理:如果p是一个质数,而整数a不是p的倍数,则有a(p-1)≡1(mod p)

费马-欧拉定理:若n,a为正整数,且 n , a 互质,则:  

霍尔定理:  判断二分图是否完美匹配的充要条件:首先要求|X|==|Y|(左右点数相等),对于任意的X的子集a都有|a|<=|b|,其中b是a能达到的点集的并

霍尔定理推论:对于二分图G={X+Y,E},最大匹配M=|X| - max(|S| - |N(S)|)   (S为X的子集,N(S)为S所能到达的点集的并)(|S|可以为0,所以后者一定不小于0)(HDU6667)

如果p % 4 =3,x^2  = a(mod p) 那么x = ±pow(a, (p+1)/4, p) 

(bp ≡ ap b(mod p)

 

 若a*b-c*d==1,则a和c,a和d,b和c,b和d互质

 [公式]

斐波那契数列求和公式:Sn = 2 * an + an-1 -1

小于n且与n互质的数之和 S = n * phi( n ) / 2

对于质数p

  若 n % p == 0 则  phi( n * p ) = phi( n ) * p

  若 n % p != 0 则  phi( n * p ) = phi( n ) * ( p - 1 )

  phi( pk ) == pk - pk-1 == (p - 1) * pk-1

欧拉降幂 (易证后两个包括第一个,所以只需要判断b和phi(p)的大小关系来套用第二个或者第三个)

若 a = 1 (mod p) , 则 a(p^k) = 1 (mod pk+1)   ( 这里 ^ 是指数 )  

欧拉函数对于第i位的三元组( phi(i) , phi(i + 1) , phi(i + 2) )是唯一的

转载于:https://www.cnblogs.com/Zeronera/p/11308238.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值