十八 轮廓发现

推文:OpenCV-Python教程(11、轮廓检测)

一、轮廓发现

基于图像边缘提取的基础,寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓的发现。

 

操作步骤

  • 1.转换图像为二值化图像:threshold方法或者canny边缘提取获取的都是二值化图像
  • 2.通过二值化图像寻找轮廓:findContours
  • 3.描绘轮廓:drawContours

二、相关函数

1、findContours寻找轮廓

直接使用二值化图像 cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
使用边缘检测后的图像 def findContours(image, mode, method, contours=None, hierarchy=None, offset=None):

image:输入图像,图像必须为8-bit单通道图像,图像中的非零像素将被视为1,0像素保留其像素值,故加载图像后会自动转换为二值图像。可以通过threshold和canny获取

mode:轮廓检索模式

  • RETR_EXTERNAL:表示只检测最外层轮廓,对所有轮廓设置hierarchy[i][2]=hierarchy[i][3]=-1
  • RETR_LIST:提取所有轮廓,并放置在list中,检测的轮廓不建立等级关系
  • RETR_CCOMP:提取所有轮廓,并将轮廓组织成双层结构(two-level hierarchy),顶层为连通域的外围边界,次层位内层边界
  • RETR_TREE:提取所有轮廓并重新建立网状轮廓结构
  • RETR_FLOODFILL:官网没有介绍,应该是洪水填充法

 

method:轮廓近似方法

  • CHAIN_APPROX_NONE:获取每个轮廓的每个像素,相邻的两个点的像素位置差不超过1
  • CHAIN_APPROX_SIMPLE:压缩水平方向,垂直方向,对角线方向的元素,值保留该方向的重点坐标,如果一个矩形轮廓只需4个点来保存轮廓信息
  • CHAIN_APPROX_TC89_L1和CHAIN_APPROX_TC89_KCOS使用Teh-Chinl链逼近算法中的一种

返回值

ret = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
cloneImage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)    #RETR_TREE包含检测内部
  • 返回一个元组,内部有三个元素
  • <class 'numpy.ndarray'>
  • <class 'list'>
  • <class 'numpy.ndarray'>

第一个返回值:cloneImage是我们传入的二值化图像

第二个返回值:contours是一个列表,是轮廓本身,含有轮廓上面的各个点的位置信息

第三个返回值:heriachy是每条轮廓对应的属性

2、drawContours绘制轮廓

 

def drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None, maxLevel=None, offset=None):

 

1.image:输入输出图像,Mat类型即可

2.contours:使用findContours检测到的轮廓数据,每个轮廓以点向量的形式存储

3.contourIdx:绘制轮廓的只是变量,如果为负值则绘制所有输入轮廓(就是i,仅仅表示一个序号)

4.color:轮廓颜色

5.thickness:绘制轮廓所用线条粗细度,如果值为负值,则在轮廓内部绘制

 

 

cv.drawContours(image,contours,i,(0,0,255),2)    #绘制轮廓
cv.drawContours(image,contours,i,(0,0,255),-1)    #填充轮廓

 

三、代码实现

1、使用直接使用阈值方法threshold方法获取二值化图像来选择轮廓

import cv2 as cv
import numpy as np

def contours_demo(image):
    # 高斯模糊,消除噪声
    dst = cv.GaussianBlur(image,(9,9),15)

    # 先变灰度图像
    gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY)

    #OTSU大律法获取二值图像
    #args
    #   输入图像
    #   阈值(为0是全局自适应阈值, 参数0可改为任意数字但不起作用)
    #   与THRESH_BINARY和THRESH_BINARY_INV阈值类型一起使用设置的最大值。
    #   阈值类型
    ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)
    cv.imshow('binary image',binary)

    #寻找轮廓(直接输入二值图像)
    #args:
    #   输入的二值图像
    #   轮廓检索模式  RETR_TREE:提取所有轮廓并重新建立网状轮廓结构
    #   轮廓近似方法  CHAIN_APPROX_SIMPLE:压缩水平方向,垂直方向,对角线方向的元素,值保留该方向的重点坐标,如果一个矩形轮廓只需4个点来保存轮廓信息
    #return:
    #   传入的二值图像(ndarray)
    #   list:轮廓本身,含有轮廓上面各个点的位置信息
    #   每条轮廓对应的属性(ndarray)
    #cloneimage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)  #RETR_TREE包含检测内部
    cloneImage, contours, heriachy = cv.findContours(binary, cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)  # RETR_EXTERNAL检测外部轮廓
    for i ,contour in enumerate(contours):
        #cv.drawContours(image,contours,i,(0,0,255),2)      #绘制轮廓
        cv.drawContours(image,contours,i,(0,0,255),-1)      #填充轮廓
        print(i)
    cv.imshow('detect image',image)

src = cv.imread('circle.png')
cv.imshow('input image',src)
contours_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

如果使用绘制轮廓的话:

2、使用canny边缘检测获取二值化图像

 1 import cv2 as cv
 2 import numpy as np
 3 
 4 #提取边缘信息
 5 def edge_demo(image):
 6     #1、高斯模糊
 7     dst = cv.GaussianBlur(image,(3,3),0)
 8     #2、灰度化
 9     gray = cv.cvtColor(dst,cv.COLOR_BGR2GRAY)
10     #3、canny边缘提取出来的是二值图像
11     edge_output = cv.Canny(gray,50,108)
12 
13     cv.imshow('edge_info',edge_output)
14     return edge_output
15 
16 #轮廓发现绘制
17 def contours_demo(image):
18     binary = edge_demo(image)
19     # 检测轮廓
20     # 寻找轮廓(输入canny边缘提取之后的二值图像)
21     # args:
22     #   输入的二值图像
23     #   轮廓检索模式  RETR_TREE:提取所有轮廓并重新建立网状轮廓结构
24     #   轮廓近似方法  CHAIN_APPROX_SIMPLE:压缩水平方向,垂直方向,对角线方向的元素,值保留该方向的重点坐标,如果一个矩形轮廓只需4个点来保存轮廓信息
25     # return:
26     #   传入的二值图像(ndarray)
27     #   list:轮廓本身,含有轮廓上面各个点的位置信息
28     #   每条轮廓对应的属性(ndarray)
29     cloneimage,contours,heriachy = cv.findContours(binary,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)  #RETR_TREE包含检测内部
30     for i,contour in enumerate(contours):
31         #cv.drawContours(image,contours,i,(0,0,255),2)  #绘制轮廓
32         cv.drawContours(image,contours,i,(0,0,255),-1)  #填充轮廓
33         print(i)
34     cv.imshow('detect contours',image)
35 
36 img = cv.imread('contours.png')
37 cv.imshow('input image',img)
38 contours_demo(img)
39 cv.waitKey(0)
40 cv.destroyAllWindows()

 

转载于:https://www.cnblogs.com/pacino12134/p/9884392.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值