adaboost面试题

1、简述权值更新方法

(1)初始化权值分布;

(2)找到误差最小的弱分类器;

(3)计算弱分类器的权值;

(4)更新下一轮样本的权值分布;

(5)集合多个弱分类器成一个最终的强分类器。

2、为什么能快速收敛?

因为每轮训练后,都会增大上一轮训练错误的样本的权重,下一轮的分类器为了达到较低的分类误差,会把权重高的样本分类正确,这样导致的结果是虽然每个弱分类器都有可能分错,但是能保证权重大的样本分正确。

3、优缺点?

不宜过拟合,能够从相当弱的弱分类器组合成一个强分类器;

缺点对异常样本比较敏感,异常样本会得到较高的权重,会影响最终的性能。

4、

转载于:https://www.cnblogs.com/pacino12134/p/11340106.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值