matlab:双或三方演化博弈,lotka-Volterra 1.双方演化博弈:代分析稳定点分析,代绘制相位图

本文详细介绍了如何使用MATLAB进行双方和三方演化博弈的稳定性分析及仿真,包括动态方程的建立、数值求解和相位图绘制。通过这种方式,可以直观理解博弈的动态行为和稳定点。此外,还探讨了Lotka-Volterra模型在生态系统中的应用,展示如何模拟种群动态变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matlab:双或三方演化博弈,lotka-Volterra 1.双方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真图代码
2.三方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真图代码3.lotka-Volterra模型
请添加图片描述

YID:7350644023709252

资料来源于 https://www.liruan.net/963.html

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

### 三方演化博弈 MATLAB 示例码 在研究三方演化博弈的过程中,可以采用Lotka-Volterra模型作为基础框架之一。为了实现这一目的,在MATLAB环境中编写相应的程序能够帮助理解不同策略间的动态变化。 #### 定义参数与初始条件 首先定义各个群体的增长率、相互作用系数以及其他必要的初始化设置: ```matlab % 参数设定 r1 = 0.8; % 种群1增长率 r2 = 0.7; % 种群2增长率 r3 = 0.9; % 种群3增长率 a12 = 0.5; a13 = 0.4; a21 = 0.6; a23 = 0.3; a31 = 0.2; a32 = 0.7; % 初始种群数量 N1_0 = 100; N2_0 = 80; N3_0 = 60; tspan = [0 10]; % 时间范围 ``` #### 构建微分方程组描述系统动力学行为 接着构建一个函数文件`tridynamic.m`用于表示三个物种随时间演变的动力学规律: ```matlab function dNdt = tridynamic(t,N,params) r1 = params.r1; r2 = params.r2; r3 = params.r3; a12 = params.a12;a13=params.a13; a21 = params.a21;a23=params.a23; a31 = params.a31;a32=params.a32; N1=N(1); N2=N(2); N3=N(3); dN1_dt=r1*N1*(1-(a12*N2+a13*N3)/K); dN2_dt=r2*N2*(1-(a21*N1+a23*N3)/K); dN3_dt=r3*N3*(1-(a31*N1+a32*N2)/K); dNdt=[dN1_dt;dN2_dt;dN3_dt]; end ``` 注意这里假设了一个环境承载力\( K \),可以根据实际情况调整此值[^1]。 #### 调用ODE求解器并绘图展示结果 最后调用MATLAB内置的常微分方程数值积分工具ode45()完成整个仿真的执行,并通过plot命令呈现最终图像: ```matlab params.struct('r1',r1,'r2',r2,'r3',r3,... 'a12',a12,'a13',a13,... 'a21',a21,'a23',a23,... 'a31',a31,'a32',a32); [t,y]= ode45(@(t,Y) tridynamic(t,Y,params), tspan,[N1_0 N2_0 N3_0]); figure(); hold on; grid on; plot(t,y(:,1),'b-',t,y(:,2),'g-.',t,y(:,3),'r:'); xlabel('Time'); ylabel('Population Size'); legend({'Species 1','Species 2','Species 3'}); title('Tripartite Evolutionary Game Simulation Results'); ``` 上述码实现了基于Lotka-Volterra竞争模型的三方演化博弈仿真过程[^2]。通过改变不同的参数配置,观察到各参与方之间复杂的互动模式及其长期发展趋势。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值