- 博客(13)
- 收藏
- 关注
原创 昇思25天学习打卡营第13天|ResNet50图像分类
ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。
2024-07-01 22:53:23 804
原创 昇思25天学习打卡营第12天|ResNet50迁移学习
在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。迁移学习详细内容见。
2024-07-01 22:02:54 878
原创 昇思25天学习打卡营第11天|FCN图像语义分割
FCN主要用于图像分割领域,是一种端到端的分割方法,是深度学习应用在图像语义分割的开山之作。通过进行像素级的预测直接得出与原图大小相等的label map。因FCN丢弃全连接层替换为全卷积层,网络所有层均为卷积层,故称为全卷积网络。全卷积神经网络主要使用以下三种技术:卷积化(Convolutional)使用VGG-16作为FCN的backbone。VGG-16的输入为224*224的RGB图像,输出为1000个预测值。VGG-16只能接受固定大小的输入,丢弃了空间坐标,产生非空间输出。
2024-07-01 15:22:23 685
原创 昇思25天学习打卡营第10天|使用静态图加速
AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。
2024-06-28 15:29:01 852
原创 昇思25天学习打卡营第9天|保存与加载
🤖 快速入门MindSpore AI:打造你的智能助手基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。保存和加载模型权重保存模
2024-06-28 13:39:53 336
原创 昇思25天学习打卡营第8天|模型训练
从网络构建中加载代码,构建一个神经网络模型。nn.ReLU(),nn.ReLU(),超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:公式中,𝑛是批量大小(batch size),𝜂是学习率(learning rate)。另外,𝑤𝑡为训练轮次𝑡中的权重参数,∇𝑙为损失函数的导数。
2024-06-28 13:32:26 873
原创 昇思25天学习打卡营第7天|函数式自动微分
🤖 快速入门MindSpore AI:打造你的智能助手基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动
2024-06-27 15:33:32 926
原创 昇思25天学习打卡营第6天|网络构建
当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。nn.ReLU(),nn.ReLU(),构建完成后,实例化Network对象,并查看其结构。Network
2024-06-26 20:50:36 665
原创 昇思25天学习打卡营第5天|数据变换 Transforms
基本介绍🤖 快速入门MindSpore AI:打造你的智能助手基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可
2024-06-26 12:37:34 974
原创 昇思25天学习打卡营第4天|数据集 Dataset
模块提供了一些常用的公开数据集和标准格式数据集的加载API。对于MindSpore暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过接口实现自定义方式的数据集加载。支持通过可随机访问数据集对象、可迭代数据集对象和生成器(generator)构造自定义数据集,下面分别对其进行介绍。
2024-06-25 23:31:02 942
原创 昇思25天学习打卡营第3天|张量 Tensor
(Tensor)是一个可用来表示在一些矢量(vectors)、标量(scalars)和其他张量(other tensors)之间的线性关系的多线性函数,这些线性关系的基本例子有内积(inner product)、外积(outer product)、线性映射(linear mapping)以及笛卡
2024-06-25 22:16:44 1051
原创 昇思25天学习打卡营第1天|基本介绍
从数据预处理到模型训练,再到安全部署,MindSpore提供了一站式的解决方案。:内置的MindSpore Insight工具,让调试过程变得直观。介绍了昇腾AI全栈的组成,包括Ascend芯片、Atlas硬件等。绝对是一个值得尝试的框架。是一个全场景深度学习框架,它支持云、边缘和端侧场景,让。:MindSpore的API设计简洁,学习成本低。开发变得简单,还提供了强大的功能支持。:拓展新领域,如GNN和强化学习。深度学习框架的心得体会。:优化的执行引擎,提升运算速度。:高级接口,简化训练和推理管理。
2024-06-21 17:00:31 478
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人