昇思25天学习打卡营第3天|张量 Tensor

🤖 快速入门MindSpore AI:打造你的智能助手


 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速

张量 Tensor

张量(Tensor)是一个可用来表示在一些矢量(vectors)、标量(scalars)和其他张量(other tensors)之间的线性关系的多线性函数,这些线性关系的基本例子有内积(inner product)、外积(outer product)、线性映射(linear mapping)以及笛卡儿积(Kronecker product)。其坐标在 𝑛 维空间内,有  𝑛𝑟 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换(linear transformations)。𝑟 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。

张量是一种特殊的数据结构,与数组和矩阵非常相似。张量(Tensor)是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。

import numpy as np
import mindspore
from mindspore import ops
from mindspore import Tensor, CSRTensor, COOTensor

创建张量

张量的创建方式有多种,构造张量时,支持传入Tensorfloatintbooltuplelistnumpy.ndarray类型。

  • 根据数据直接生成

    可以根据数据创建张量,数据类型可以设置或者通过框架自动推断。

data = [1, 0, 1, 0]
x_data = Tensor(data)
print(data, type(data))
print(x_data, type(x_data),x_data.shape, x_data.dtype)
[1, 0, 1, 0] <class 'list'>
[1 0 1 0] <class 'mindspore.common.tensor.Tensor'> (4,) Int64
  • 从NumPy数组生成

    可以从NumPy数组创建张量。

np_array = np.array(data)
x_np = Tensor(np_array)
print(np_array, np_array.shape, type(np_array),np_array.dtype)
print(x_np, x_np.shape, type(x_np),x_np.dtype)
[1 0 1 0] (4,) <class 'numpy.ndarray'> int64
[1 0 1 0] (4,) <class 'mindspore.common.tensor.Tensor'> Int64
  • 使用init初始化器构造张量

    当使用init初始化器对张量进行初始化时,支持传入的参数有initshapedtype

from mindspore.common.initializer import One, Normal

# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())

print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)
tensor1:
 [[1. 1.]
 [1. 1.]]
tensor2:
 [[0.00833413 0.01026092]
 [0.00427328 0.00035296]]

init主要用于并行模式下的延后初始化,在正常情况下不建议使用init对参数进行初始化。

  • 继承另一个张量的属性,形成新的张量

from mindspore import ops

x_ones = ops.ones_like(x_data)
print(f"Ones Tensor: \n {x_ones} \n")

x_zeros = ops.zeros_like(x_data)
print(f"Zeros Tensor: \n {x_zeros} \n")
Ones Tensor:
 [1 1 1 1]

Zeros Tensor:
 [0 0 0 0]

张量的属性

张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。

  • 形状(shape):Tensor的shape,是一个tuple。

  • 数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。

  • 单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。

  • 占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。

  • 维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。

  • 元素个数(size): Tensor中所有元素的个数,是一个整数。

  • 每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。

x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)

print("x_shape:", x.shape)
print("x_dtype:", x.dtype)
print("x_itemsize:", x.itemsize)
print("x_nbytes:", x.nbytes)
print("x_ndim:", x.ndim)
print("x_size:", x.size)
print("x_strides:", x.strides)
print("x_type:",type(x))
x_shape: (2, 2)
x_dtype: Int32
x_itemsize: 4
x_nbytes: 16
x_ndim: 2
x_size: 4
x_strides: (8, 4)
x_type: <class 'mindspore.common.tensor.Tensor'>

注释:

x_shape: (2, 2)这表示张量 `x` 的形状是 2 行和 2 列,形成一个 2x2 矩阵。
x_dtype: Int32张量 `x` 的数据类型是 32 位整数,因此它被称为 Int32。
x_itemsize: 4itemsize 是每个元素在张量中的大小(以字节为单位)。对于 Int32,它是 4 字节。
x_nbytes: 16nbytes 属性返回张量所使用的总字节数。对于一个 2x2 的 Int32 矩阵,它是 16 字节。
x_ndim: 2ndim 属性表示张量的维度数。在这里,`x` 是一个 2 维张量。
x_size: 4size 属性返回张量中的总元素数。对于一个 2x2 矩阵,有 4 个元素。
x_strides: (8, 4)strides 属性是一个元组,表示在内存中要跳过多少字节才能到达下一个元素沿着每个维度。
对于 `x`,您需要跳过 8 字节才能到达下一行,跳过 4 字节才能到达下一列。

张量索引

Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:和 ...用于对数据进行切片。

tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))

print("First row: {}".format(tensor[0]))
print("value of bottom right corner: {}".format(tensor[1, 1]))
print("Last column: {}".format(tensor[:, -1]))
print("First column: {}".format(tensor[..., 0]))
First row: [0. 1.]
value of bottom right corner: 3.0
Last column: [1. 3.]
First column: [0. 2.]

张量运算

张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似,下面介绍其中几种操作。

普通算术运算有:加(+)、减(-)、乘(*)、除(/)、取模(%)、整除(//)。

x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)

output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x
output_floordiv = y // x

print("add:", output_add)
print("sub:", output_sub)
print("mul:", output_mul)
print("div:", output_div)
print("mod:", output_mod)
print("floordiv:", output_floordiv)
add: [5. 7. 9.]
sub: [-3. -3. -3.]
mul: [ 4. 10. 18.]
div: [4.  2.5 2. ]
mod: [0. 1. 0.]
floordiv: [4. 2. 2.]

concat将给定维度上的一系列张量连接起来。

data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.concat((data1, data2), axis=0)

print(output)
print("shape:\n", output.shape)
[[0. 1.]
 [2. 3.]
 [4. 5.]
 [6. 7.]]
shape:
 (4, 2)

stack则是从另一个维度上将两个张量合并起来。

data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.stack([data1, data2])

print(output)
print("shape:\n", output.shape)
[[[0. 1.]
  [2. 3.]]

 [[4. 5.]
  [6. 7.]]]
shape:
 (2, 2, 2)

Tensor与NumPy转换

Tensor可以和NumPy进行互相转换。

Tensor转换为NumPy

与张量创建相同,使用 Tensor.asnumpy() 将Tensor变量转换为NumPy变量。

t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))
t: [1. 1. 1. 1. 1.] <class 'mindspore.common.tensor.Tensor'>
n: [1. 1. 1. 1. 1.] <class 'numpy.ndarray'>

NumPy转换为Tensor

使用Tensor()将NumPy变量转换为Tensor变量。

n = np.ones(5)
t = Tensor.from_numpy(n)
np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))
n: [2. 2. 2. 2. 2.] <class 'numpy.ndarray'>
t: [2. 2. 2. 2. 2.] <class 'mindspore.common.tensor.Tensor'>

关注:它将n这个数组转换为一个Tensor,但是因为 t 与 n 共享相同的内存,所以改变 n 将改变 t 。

稀疏张量

稀疏张量是一种特殊张量,其中绝大部分元素的值为零。

在某些应用场景中(比如推荐系统、分子动力学、图神经网络等),数据的特征是稀疏的,若使用普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销。这时就可以使用稀疏张量来表征这些数据。

MindSpore现在已经支持最常用的CSRCOO两种稀疏数据格式。

常用稀疏张量的表达形式是<indices:Tensor, values:Tensor, shape:Tensor>。其中,indices表示非零下标元素, values表示非零元素的值,shape表示的是被压缩的稀疏张量的形状。在这个结构下,我们定义了三种稀疏张量结构:CSRTensorCOOTensorRowTensor

CSRTensor

CSR(Compressed Sparse Row)稀疏张量格式有着高效的存储与计算的优势。其中,非零元素的值存储在values中,非零元素的位置存储在indptr(行)和indices(列)中。各参数含义如下:

  • indptr: 一维整数张量, 表示稀疏数据每一行的非零元素在values中的起始位置和终止位置, 索引数据类型支持int16、int32、int64。

  • indices: 一维整数张量,表示稀疏张量非零元素在列中的位置, 与values长度相等,索引数据类型支持int16、int32、int64。

  • values: 一维张量,表示CSRTensor相对应的非零元素的值,与indices长度相等。

  • shape: 表示被压缩的稀疏张量的形状,数据类型为Tuple,目前仅支持二维CSRTensor

CSRTensor的详细文档,请参考mindspore.CSRTensor

下面给出一些CSRTensor的使用示例:

indptr = Tensor([0, 2, 4 ,5, 6, 7, 8])
indices = Tensor([0, 1, 2, 3, 4, 5, 0, 0])
values = Tensor([66, 90, 95, 99, 10, 20, 30, 40], dtype=mindspore.float32)
shape = (6, 8)

# Make a CSRTensor
csr_tensor = CSRTensor(indptr, indices, values, shape)

print(csr_tensor.astype(mindspore.float64).dtype)
print(csr_tensor.to_dense())
上述代码会生成如下所示的 CSRTensor
Float64
[[66. 90.  0.  0.  0.  0.  0.  0.]
 [ 0.  0. 95. 99.  0.  0.  0.  0.]
 [ 0.  0.  0.  0. 10.  0.  0.  0.]
 [ 0.  0.  0.  0.  0. 20.  0.  0.]
 [30.  0.  0.  0.  0.  0.  0.  0.]
 [40.  0.  0.  0.  0.  0.  0.  0.]]

这个稀疏矩阵的表示,它通常用于存储稀疏数据以节省内存。每个参数的详细介绍如下:

  • indptr:这是一个索引数组,它指示每个非零行的起始位置。在您的例子中,indptr 的值 [0, 2, 4, 5, 6, 7, 8] 表示第一行的非零元素从索引 0 开始,第二行的非零元素从索引 2 开始,依此类推。

  • indices:这是一个索引数组,它指示每个非零元素的行和列索引。在您的例子中,indices 的值 [0, 1, 2, 3, 4, 5, 0, 0] 表示第一行的非零元素位于列 0 和 1,第二行的非零元素位于列 2 和 3,依此类推。

  • values:这是一个值数组,它包含矩阵中所有非零元素的值。在您的例子中,values 的值 [66, 90, 95, 99, 10, 20, 30, 40] 是这些非零元素的实际数值。

  • shape:这是一个形状数组,它指定矩阵的大小。在您的例子中,shape 的值 (6, 8) 表示矩阵有 6 行和 8 列。

将这些参数结合起来,我们可以重建原始矩阵。例如,第一行的非零元素是 66 和 90,它们分别位于列 0 和 1。因此,第一行将是 [66. 90. 0. ...],其中后面有 6 - indptr[1] = 4 - 2 = 2 的零元素。类似地,我们可以重建其他行。

indptr = Tensor([0, 1, 2 ,3, 4, 5, 6])
indices = Tensor([0, 1, 2, 3, 4, 5, 0, 0])
values = Tensor([66, 90, 95, 99, 10, 20, 30, 40], dtype=mindspore.float32)
shape = (6, 8)

# Make a CSRTensor
csr_tensor = CSRTensor(indptr, indices, values, shape)

print(csr_tensor.astype(mindspore.float64).dtype)
print(csr_tensor.to_dense())
上述代码会生成如下所示的 CSRTensor
Float64
[[66.  0.  0.  0.  0.  0.  0.  0.]
 [ 0. 90.  0.  0.  0.  0.  0.  0.]
 [ 0.  0. 95.  0.  0.  0.  0.  0.]
 [ 0.  0.  0. 99.  0.  0.  0.  0.]
 [ 0.  0.  0.  0. 10.  0.  0.  0.]
 [ 0.  0.  0.  0.  0. 20.  0.  0.]]

COOTensor

COO(Coordinate Format)稀疏张量格式用来表示某一张量在给定索引上非零元素的集合,若非零元素的个数为N,被压缩的张量的维数为ndims。各参数含义如下:

  • indices: 二维整数张量,每行代表非零元素下标。形状:[N, ndims], 索引数据类型支持int16、int32、int64。

  • values: 一维张量,表示相对应的非零元素的值。形状:[N]

  • shape: 表示被压缩的稀疏张量的形状,目前仅支持二维COOTensor

COOTensor的详细文档,请参考mindspore.COOTensor

下面给出一些COOTensor的使用示例:

indices = Tensor([[0, 1], [1, 2]], dtype=mindspore.int32)
values = Tensor([1, 2], dtype=mindspore.float32)
shape = (3, 4)

# Make a COOTensor
coo_tensor = COOTensor(indices, values, shape)

print(coo_tensor.values)
print(coo_tensor.indices)
print(coo_tensor.shape)
print(coo_tensor.astype(mindspore.float64).dtype)  # COOTensor to float64
上述代码会生成如下所示的COOTensor:
[1. 2.]
[[0 1]
 [1 2]]
(3, 4)
Float64
[[0. 1. 0. 0.]
 [0. 0. 2. 0.]
 [0. 0. 0. 0.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值