激光雷达作为一种先进的感知装置,在自动驾驶和车辆辅助系统中起着重要的作用。通过激光雷达可以获取到车辆周围环境的高精度三维点云数据,这些数据对于实现车辆的感知和决策至关重要。本文将介绍如何使用MATLAB实现为激光雷达生成车辆地面实况的三维边界框点云。
首先,我们需要导入激光雷达的点云数据。假设我们有一个名为"pointCloud"的变量,它储存了激光雷达采集到的点云数据。接下来,我们将对这些点云数据进行处理,提取出车辆的地面实况。
% 导入激光雷达点云数据
load('pointCloud.mat');
% 设置地面提取的参数
gridSize = 0.1; % 网格大小
maxDistance = 0.3; % 最大距离阈值
% 创建地面提取器对象
groundExtractor = pcfitplane(pointCloud, maxDistance);
% 提取地面点云
groundIndices = findGroundPoints(groundExtractor, gridSize);
% 获取地面点云
groundPointCloud = select(pointCloud, groundIndices);
在上述代码中,我们使用了pcfitplane
函数来拟合激光雷达点云中的地面平面。通过设置适当的最大距离阈值,我们可以将不属于地面的点云数据过滤掉。然后,我们通过findGroundPoints
函数找到符合条件的地面点