随机采样一致性(Random Sample Consensus,RANSAC)是一种常用的点云处理算法,主要用于拟合点云中的平面模型。在本文中,我们将介绍基于随机采样一致性的平面拟合算法,并演示其在点云库(Point Cloud Library,PCL)中的应用。同时,我们将提供相应的源代码以供参考。
- 算法原理
基于随机采样一致性的平面拟合算法主要分为以下几个步骤:
(1)随机采样:从原始点云中随机选择一组点作为初始拟合模型的样本。
(2)模型拟合:使用选定的样本点拟合平面模型。常用的拟合方法包括最小二乘法、主成分分析等。
(3)局内点筛选:计算所有点到拟合平面的距离,并将距离小于给定阈值的点标记为局内点,否则标记为局外点。
(4)一致性评估:统计局内点的数量,如果超过给定的阈值,则认为当前拟合模型是有效的;否则,返回第(1)步。
(5)模型更新:如果当前拟合模型有效,则使用所有局内点重新拟合平面模型。
(6)重复迭代:重复执行第(1)至第(5)