sklearn-多项式回归

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import  PolynomialFeatures
from sklearn.linear_model import  LinearRegression

#载入数据
data = np.genfromtxt("job.csv",delimiter=",")

x_data = data[1:, 1, np.newaxis]
y_data = data[1:, 2, np.newaxis]

model = LinearRegression()
model.fit(x_data, y_data)

# 定义多项式回归,degree的值可以调节多项式的特征
poly_reg = PolynomialFeatures(degree=3)
#特征处理
x_poly = poly_reg.fit_transform(x_data)
# 定义回归模型
lin_reg = LinearRegression()
#训练模型
lin_reg.fit(x_poly,y_data)

# 画图
plt.plot(x_data,y_data, 'b.' )
plt.plot(x_data, lin_reg.predict(poly_reg.fit_transform(x_data)), c='r')
plt.title("Truth of Bluff (Polynomian Regression)")
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值