POJ2635The Embarrassed Cryptographer(大数取余+素数筛选+好题)

题目链接

题意:K是由两个素数乘积,如果最小的素数小于L,输出BAD最小的素数,否则输出GOOD

分析 素数打表将 L 大点的素数打出来,一定要比L大,然后就开始枚举,只需K对 素数 取余 看看是否为零,但是 k 是一个很大的数,怎么存储又是一个问题,很好的一个解决方案:用千进制来表示 :加入是 1234567890 表示成 【890】【567】【234】【1】这样存储,如果是十进制对 k 取余,那么就是 从最高位开始 加上 上步*10再取余,放在这里就是*1000

 1 #include <iostream>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <cstdio>
 5 #include <cmath>
 6 using namespace std;
 7 const int Max = 1000000 + 10;
 8 int primer[Max + 10], flag[Max + 10], tot;
 9 char str[10000 + 10];
10 int Kt[10000], L;
11 void get_primer()
12 {
13     tot = 0;
14     memset(flag, 0, sizeof(flag));
15     for(int i = 2; i <= Max; i++)
16     {
17         if(flag[i] == 0)
18         {
19             primer[tot++] = i;
20             for(int j = i; j <= Max / i; j++)
21                 flag[i * j] = 1;
22         }
23     }
24 }
25 void PrimeTable(void)
26 {
27     tot=0;
28     primer[tot++]=2;
29 
30     for(int i=3;i<=Max;i+=2)  //奇偶法
31     {
32         bool flaga=true;
33         for(int j=0;primer[j]*primer[j]<=i;j++)  //根号法+递归法
34             if(!(i%primer[j]))
35             {
36                 flaga=false;
37                 break;
38             }
39         if(flaga)
40             primer[tot++]=i;
41     }
42     return;
43 }
44 
45 int Pow(int x, int y)
46 {
47     int ans = 1;
48     while(y--)
49         ans *= x;
50     return ans;
51 }
52 int mod(int a[], int key, int lenkt) //大数取余
53 {
54     int ans = 0;
55     for(int i = lenkt - 1; i >= 0; i--)
56     {
57         ans = (ans * 1000 + a[i]) % key;
58     }
59     return ans;
60 }
61 int main(int argc, char** argv)
62 {
63     get_primer();
64     while(scanf("%s%d", str, &L) != EOF)
65     {
66         if(strcmp(str,"0") == 0 && L == 0)
67             break;
68         memset(Kt, 0, sizeof(Kt));
69         int len = strlen(str);
70         int lenkt = 0;
71         for(int i = len - 1; i >= 0; i -= 3)
72         {
73             int t = i, cnt = 0;
74             while(cnt < 3 && t >= 0)
75             {
76                 Kt[lenkt] += (str[t] - '0') * Pow(10, cnt); // pow函数是double,会不准,找了天错
77                 cnt++;
78                 t--;
79             }
80             lenkt++;
81         }
82         int have_find = false;
83         for(int i = 0; primer[i] < L; i++)
84         {
85             if(mod(Kt, primer[i], lenkt) == 0)
86             {
87                 have_find = true;
88                 printf("BAD %d\n", primer[i]);
89                 break;
90             }
91         }
92         if(have_find == false)
93             printf("GOOD\n");
94     }
95     return 0;
96 }
View Code

 

转载于:https://www.cnblogs.com/zhaopAC/p/5260175.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值