网络结构对联想记忆的影响研究
1. 神经元状态更新与关键参数定义
1.1 神经元状态异步更新
神经元状态通过蒙特卡罗方法异步更新。以概率 1/N 随机选择一个神经元,其状态更新规则如下:
[S_i = \text{sign}\left(\sum_{j = 1}^{N} J_{ij}S_j\right)]
当更新过程访问了 N 个神经元后,蒙特卡罗时间推进 1。虽然在该算法中同一神经元可能被选中两次,但当 N 很大时,这种概率非常小。
1.2 存储容量相关参数
为量化模式检索,引入重叠序参数 (m_l):
[m_l = \frac{1}{N}\sum_{i = 1}^{N} S_i\eta_i^l]
其中 (l) 是模式编号。重叠参数 (m_l) 表示系统状态 (S) 与存储模式 (\eta^l) 之间的相似程度。例如,若系统状态与模式 (\eta^1) 相同,则 (m_1 = 1);若相差甚远,则 (m_1 = 0)。
1.3 存储容量的测量步骤
测量模式 (\eta^1) 的稳定性以判断其是否被存储,具体步骤如下:
1. 构建网络结构 ({a_{ij}})。
2. 根据赫布规则(式 1)设置 (J_{ij}),在网络中存储 (p) 个随机模式,将 (p) 从 1 变化到 50 以判断存储容量。
3. 在 (t = 0) 时将系统初始化为模式 (\eta^1),并随时间演化状态直至动力学收敛(即状态不随时间变化)。
4. 测量最终状态与 (\eta^1) 之间的重叠 (m_1),若 (m_1 \geq 0.9),则认为模式 (\e
超级会员免费看
订阅专栏 解锁全文
8050

被折叠的 条评论
为什么被折叠?



