【LeetCode】444. 序列重建

本文探讨了如何通过构建有向图并进行拓扑排序来判断给定的整数数组nums是否是序列sequences的唯一最短超序列。通过实例和代码实现,解释了如何利用子序列概念和图论解决此问题,适合理解序列重建算法及其在编程中的实际应用。
摘要由CSDN通过智能技术生成

题目

444. 序列重建

给定一个长度为 n 的整数数组 nums ,其中 nums 是范围为 [1,n] 的整数的排列。还提供了一个 2D 整数数组 sequences ,其中 sequences[i]nums 的子序列。
检查 nums 是否是唯一的最短 超序列 。最短 超序列长度最短 的序列,并且所有序列 sequences[i] 都是它的子序列。对于给定的数组 sequences ,可能存在多个有效的 超序列

  • 例如,对于 sequences = [[1,2],[1,3]] ,有两个最短的 超序列[1,2,3][1,3,2]
  • 而对于 sequences = [[1,2],[1,3],[1,2,3]] ,唯一可能的最短 超序列[1,2,3][1,2,3,4] 是可能的超序列,但不是最短的。

如果 nums 是序列的唯一最短 超序列 ,则返回 true ,否则返回 false
子序列 是一个可以通过从另一个序列中删除一些元素或不删除任何元素,而不改变其余元素的顺序的序列。

示例 1:

输入:nums = [1,2,3], sequences = [[1,2],[1,3]]
输出:false
解释:有两种可能的超序列:[1,2,3]和[1,3,2]。
序列 [1,2] 是[1,2,3]和[1,3,2]的子序列。
序列 [1,3] 是[1,2,3]和[1,3,2]的子序列。
因为 nums 不是唯一最短的超序列,所以返回false。

示例 2:

输入:nums = [1,2,3], sequences = [[1,2]]
输出:false
解释:最短可能的超序列为 [1,2]。
序列 [1,2] 是它的子序列:[1,2]。
因为 nums 不是最短的超序列,所以返回false。

示例 3:

输入:nums = [1,2,3], sequences = [[1,2],[1,3],[2,3]]
输出:true
解释:最短可能的超序列为[1,2,3]。
序列 [1,2] 是它的一个子序列:[1,2,3]。
序列 [1,3] 是它的一个子序列:[1,2,3]。
序列 [2,3] 是它的一个子序列:[1,2,3]。
因为 nums 是唯一最短的超序列,所以返回true。

提示:

  • n == nums.length
  • 1 <= n <= 104
  • nums[1, n] 范围内所有整数的排列
  • 1 <= sequences.length <= 104
  • 1 <= sequences[i].length <= 104
  • 1 <= sum(sequences[i].length) <= 105
  • 1 <= sequences[i][j] <= n
  • sequences 的所有数组都是 唯一
  • sequences[i]nums 的一个子序列

思路

  • 将nums中所有的元素看做节点,sequence看做节点间的顺序关系,构建有向图
  • 进行拓扑排序
  • 若nums长于最短元素,则无法完成拓扑排序
  • 若有多个结果,则在排序过程中,队列长度大于一

代码

from collections import deque
class Solution:
    def sequenceReconstruction(self, nums: List[int], sequences: List[List[int]]) -> bool:
        adjGraph = [[] for _ in range(len(nums))]
        inDegree = [0] * len(nums)
        for sequence in sequences:
            for s,e in pairwise(sequence):
                adjGraph[s-1].append(e-1)
                inDegree[e-1] += 1

        queue = deque([n for n in range(len(inDegree)) if inDegree[n]==0])
        while queue:
            if len(queue)>1: return False
            cur = queue.popleft()
            for end in adjGraph[cur]:
                inDegree[end] -= 1
                if inDegree[end] == 0: queue.append(end)        
        return True

复杂度

  • 时间复杂度: O ( m + n ) O(m+n) O(m+n),其中 m m msequences长度之和, n n nnums长度
  • 空间复杂度: O ( m + n ) O(m+n) O(m+n),其中 m m msequences长度之和, n n nnums长度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pass night

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值