题目
给定一个长度为 n
的整数数组 nums
,其中 nums
是范围为 [1,n]
的整数的排列。还提供了一个 2D 整数数组 sequences
,其中 sequences[i]
是 nums
的子序列。
检查 nums
是否是唯一的最短 超序列 。最短 超序列 是 长度最短 的序列,并且所有序列 sequences[i]
都是它的子序列。对于给定的数组 sequences
,可能存在多个有效的 超序列 。
- 例如,对于
sequences = [[1,2],[1,3]]
,有两个最短的 超序列 ,[1,2,3]
和[1,3,2]
。 - 而对于
sequences = [[1,2],[1,3],[1,2,3]]
,唯一可能的最短 超序列 是[1,2,3]
。[1,2,3,4]
是可能的超序列,但不是最短的。
如果 nums
是序列的唯一最短 超序列 ,则返回 true
,否则返回 false
。
子序列 是一个可以通过从另一个序列中删除一些元素或不删除任何元素,而不改变其余元素的顺序的序列。
示例 1:
输入:nums = [1,2,3], sequences = [[1,2],[1,3]]
输出:false
解释:有两种可能的超序列:[1,2,3]和[1,3,2]。
序列 [1,2] 是[1,2,3]和[1,3,2]的子序列。
序列 [1,3] 是[1,2,3]和[1,3,2]的子序列。
因为 nums 不是唯一最短的超序列,所以返回false。
示例 2:
输入:nums = [1,2,3], sequences = [[1,2]]
输出:false
解释:最短可能的超序列为 [1,2]。
序列 [1,2] 是它的子序列:[1,2]。
因为 nums 不是最短的超序列,所以返回false。
示例 3:
输入:nums = [1,2,3], sequences = [[1,2],[1,3],[2,3]]
输出:true
解释:最短可能的超序列为[1,2,3]。
序列 [1,2] 是它的一个子序列:[1,2,3]。
序列 [1,3] 是它的一个子序列:[1,2,3]。
序列 [2,3] 是它的一个子序列:[1,2,3]。
因为 nums 是唯一最短的超序列,所以返回true。
提示:
n == nums.length
1 <= n <= 104
nums
是[1, n]
范围内所有整数的排列1 <= sequences.length <= 104
1 <= sequences[i].length <= 104
1 <= sum(sequences[i].length) <= 105
1 <= sequences[i][j] <= n
sequences
的所有数组都是 唯一 的sequences[i]
是nums
的一个子序列
思路
- 将nums中所有的元素看做节点,sequence看做节点间的顺序关系,构建有向图
- 进行拓扑排序
- 若nums长于最短元素,则无法完成拓扑排序
- 若有多个结果,则在排序过程中,队列长度大于一
代码
from collections import deque
class Solution:
def sequenceReconstruction(self, nums: List[int], sequences: List[List[int]]) -> bool:
adjGraph = [[] for _ in range(len(nums))]
inDegree = [0] * len(nums)
for sequence in sequences:
for s,e in pairwise(sequence):
adjGraph[s-1].append(e-1)
inDegree[e-1] += 1
queue = deque([n for n in range(len(inDegree)) if inDegree[n]==0])
while queue:
if len(queue)>1: return False
cur = queue.popleft()
for end in adjGraph[cur]:
inDegree[end] -= 1
if inDegree[end] == 0: queue.append(end)
return True
复杂度
- 时间复杂度:
O
(
m
+
n
)
O(m+n)
O(m+n),其中
m
m
m为
sequences
长度之和, n n n为nums
长度 - 空间复杂度:
O
(
m
+
n
)
O(m+n)
O(m+n),其中
m
m
m为
sequences
长度之和, n n n为nums
长度