题目
给你一个正整数数组 nums
,请你帮忙从该数组中找出能满足下面要求的 最长 前缀,并返回该前缀的长度:
- 从前缀中 恰好删除一个 元素后,剩下每个数字的出现次数都相同。
如果删除这个元素后没有剩余元素存在,仍可认为每个数字都具有相同的出现次数(也就是 0 次)。
示例 1:
输入:nums = [2,2,1,1,5,3,3,5]
输出:7
解释:对于长度为 7 的子数组 [2,2,1,1,5,3,3],如果我们从中删去 nums[4] = 5,就可以得到 [2,2,1,1,3,3],里面每个数字都出现了两次。
示例 2:
输入:nums = [1,1,1,2,2,2,3,3,3,4,4,4,5]
输出:13
提示:
2 <= nums.length <= 105
1 <= nums[i] <= 105
思路
- 遍历数组,保存每个位置的所有数出现的频率
count
和所有频率出现的频率freq
- 若当前遍历的数已经出现过,则需将
freq
数组中对应的频率-1,否则直接插入 - 因0和1也算最长出现次数,且数组长度大于或等于2,所以结果最小值为2
- 当遇到一下几种情况需要更新结果集
- 所有数都只出现一次
- 所有数都出现n次,但有一个数只出现一次
- 一部分数出现n次,一部分数出现n-1次,且最大频率只多出现1次
代码
from collections import Counter
class Solution:
def maxEqualFreq(self, nums: List[int]) -> int:
freq, count = Counter(), Counter()
maxFreq = 0
ret = 2
for i, num in enumerate(nums):
if count[num]:
freq[count[num]] -= 1
count[num] += 1
maxFreq = max(maxFreq, count[num])
freq[count[num]] += 1
if maxFreq == 1\
or freq[maxFreq] * maxFreq + freq[maxFreq - 1] * (maxFreq - 1) == i + 1 and freq[maxFreq] == 1\
or freq[maxFreq] * maxFreq + 1 == i + 1 and freq[1] == 1:
ret = max(ret, i + 1)
return ret
复杂度
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)