特殊矩阵(对称矩阵)的压缩存储和解压缩

特殊矩阵(对称矩阵)的压缩存储和解压缩

参考书目:严蔚敏《数据结构》P95-96


一、背景

​ 矩阵在工程计算中经常使用,对于一些特殊矩阵,比如对称矩阵,稀疏矩阵……有时为了节省空间,可以对这类矩阵进行压缩存储这里只讨论对称矩阵,上(下)三角矩阵和对角矩阵,掌握其他类似对称矩阵就很容易了

二、压缩原则

​ 为多个值相同的元素只分配一个存储空间,对零元素不分配空间。

三、对称矩阵的压缩

  • 性质:
    0<=i,j<=n-1(在 程序中 数组下标是从 0 开始的)

    举例:

  • 压缩:以行序为主序存储下三角(包括对角线)元素

  • 推导如下:

    ①为书上的方法

    ②自己想的一种,在压缩 对角矩阵 时会多节省一点空间

推导

四、程序实现 4阶 对称矩阵压缩

​ 4阶矩阵压缩(后面会总结 n阶 )

#include <iostream>
using namespace std;

//原始矩阵 
int a[4][4]=
{
  {0,4,5,6},	
 {4,1,7,8},
 {5,7,2,9},
 {6,8,9,3}}; 
//压缩矩阵 
int Sa1[10];
int Sa2[10];
//通过压缩矩阵复原 原矩阵 
int a1[4][4] = {0}; 

void Printa()
{
	for(int i=0; i<4; i++)
	{
		for(int j=0; j<4; j++)
			cout << a[i][j] << "\t";
		cout << endl;
	}

	cout << endl;	
} 

void MatrixCompression1()//矩阵压缩 1
{
	for(int i=0; i<4; i++)
	{
		for(int j=0; j<=i; j++)
		{
			int k = i*(i+1)/2+j;
			Sa1[k] = a[i][j];
		}
	}
}

void MatrixCompression2()//矩阵压缩 2
{
	for(int i=0; i<4; i++)
	{
		for(int j=0; j<=i; j++)
		{
			int m = i-j;
			int k = 4*m-m*(m-1)/2+j;
			Sa2[k] = a
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值