[数组二分查找] 0050. 快速幂Pow(x,n)

1. 题目链接

50. Pow(x, n) - 力扣(LeetCode)



2. 题目大意

描述:给定浮点数 x 和整数 n。

要求:计算 x 的 n 次方(即 xn)。

说明

  • −100.0<x<100.0。
  • −231≤n≤231−。
  • n 是一个整数。
  • −104≤xn≤104。


3. 示例

输入:x = 2.00000, n = 10
输出:1024.00000

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25



4. 解题思路

常规方法是直接将 x 累乘 n 次得出结果,时间复杂度为 O(n)。

我们可以利用分治算法来减少时间复杂度。

根据 n 的奇偶性,我们可以得到以下结论:

  1. 如果 n 为偶数,xn=xn/2×xn/2。
  2. 如果 n 为奇数,xn=x×x(n−1)/2×x(n−1)/2。

x(n/2) 或 x(n−1)/2 又可以继续向下递归划分。

则我们可以利用低纬度的幂计算结果,来得到高纬度的幂计算结果。

这样递归求解,时间复杂度为 O(log⁡n),并且递归也可以转为递推来做。

需要注意如果 n 为负数,可以转换为 1x(−n)。



5. 参考代码

class Solution {
    public double myPow(double x, int N) {
        double ans = 1;
        long n = N;
        
        if (n < 0) {
            n = -n;
            x = 1 / x;
        }

        while (n != 0) { // 从低到高枚举 n 的每个比特位
            if ((n & 1) == 1) { // 这个比特位是 1
                ans *= x; // 把 x 乘到 ans 中
            }
            x *= x; // x 自身平方
            n >>= 1; // 继续枚举下一个比特位
        }

        return ans;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值