1. 题目链接
2. 题目描述
给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
3. 题目示例
示例 1 :
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2 :
输入:n = 13
输出:2
解释:13 = 4 + 9
4. 解题思路
- 动态初始化记忆数组:每次调用时根据
n
动态调整memo
的大小。 - 一维动态规划优化:改用一维数组降低空间复杂度,提升效率。
- 数学方法:利用四平方定理快速判断结果,时间复杂度优化至
O(√n)
。
5. 题解代码
class Solution {
public int numSquares(int n) {
// 判断是否为完全平方数
if (isPerfectSquare(n)) return 1;
// 检查是否满足4平方定理的条件
int temp = n;
while (temp % 4 == 0) {
temp /= 4;
}
if (temp % 8 == 7) return 4;
// 检查是否可以表示为两个平方数之和
for (int i = 1; i * i <= n; i++) {
if (isPerfectSquare(n - i * i)) return 2;
}
// 其余情况返回3
return 3;
}
private boolean isPerfectSquare(int num) {
int sqrt = (int) Math.sqrt(num);
return sqrt * sqrt == num;
}
}
6. 复杂度分析
时间复杂度:O(√n)
,仅需遍历到 √n
。
空间复杂度:O(1)
,常数空间。