[HOT 100] 0279. 完全平方数

1. 题目链接


279. 完全平方数 - 力扣(LeetCode)

2. 题目描述


给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

3. 题目示例


示例 1 :

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2 :

输入:n = 13
输出:2
解释:13 = 4 + 9

4. 解题思路


  1. 动态初始化记忆数组:每次调用时根据 n 动态调整 memo 的大小。
  2. 一维动态规划优化:改用一维数组降低空间复杂度,提升效率。
  3. 数学方法:利用四平方定理快速判断结果,时间复杂度优化至 O(√n)

5. 题解代码


class Solution {
    public int numSquares(int n) {
        // 判断是否为完全平方数
        if (isPerfectSquare(n)) return 1;
        
        // 检查是否满足4平方定理的条件
        int temp = n;
        while (temp % 4 == 0) {
            temp /= 4;
        }
        if (temp % 8 == 7) return 4;
        
        // 检查是否可以表示为两个平方数之和
        for (int i = 1; i * i <= n; i++) {
            if (isPerfectSquare(n - i * i)) return 2;
        }
        
        // 其余情况返回3
        return 3;
    }
    
    private boolean isPerfectSquare(int num) {
        int sqrt = (int) Math.sqrt(num);
        return sqrt * sqrt == num;
    }
}

6. 复杂度分析


时间复杂度O(√n),仅需遍历到 √n
空间复杂度O(1),常数空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值