1. 题目链接
1771. 由子序列构造的最长回文串的长度 - 力扣(LeetCode)
2. 题目描述
给你两个字符串 word1
和 word2
,请你按下述方法构造一个字符串:
- 从
word1
中选出某个 非空 子序列subsequence1
。 - 从
word2
中选出某个 非空 子序列subsequence2
。 - 连接两个子序列
subsequence1 + subsequence2
,得到字符串。
返回可按上述方法构造的最长 回文串 的 长度 。如果无法构造回文串,返回 0
。
字符串 s
的一个 子序列 是通过从 s
中删除一些(也可能不删除)字符而不更改其余字符的顺序生成的字符串。
回文串 是正着读和反着读结果一致的字符串。
3. 题目示例
示例 1 :
输入:word1 = "cacb", word2 = "cbba"
输出:5
解释:从 word1 中选出 "ab" ,从 word2 中选出 "cba" ,得到回文串 "abcba" 。
示例 2 :
输入:word1 = "ab", word2 = "ab"
输出:3
解释:从 word1 中选出 "ab" ,从 word2 中选出 "a" ,得到回文串 "aba" 。
示例 3 :
输入:word1 = "aa", word2 = "bb"
输出:0
解释:无法按题面所述方法构造回文串,所以返回 0 。
4. 解题思路
- 问题理解:
- 给定两个字符串word1和word2
- 需要找到一个最长的回文子序列,且该子序列必须包含来自两个原始字符串的字符
- 动态规划思路:
- 将两个字符串拼接成一个新字符串s
- 定义f[i][j]表示子串s[i…j]的最长回文子序列长度
- 状态转移:
- 如果s[i] == s[j]:f[i][j] = f[i+1][j-1] + 2
- 如果s[i] != s[j]:f[i][j] = max(f[i+1][j], f[i][j-1])
- 特别检查回文是否跨两个原始字符串(i在word1,j在word2)
- 初始化:
- 单个字符的回文长度为1:f[i][i] = 1
- 结果计算:
- 在计算过程中记录满足条件的最大长度
5. 题解代码
class Solution {
public int longestPalindrome(String word1, String word2) {
// 将两个字符串拼接成一个新字符串
char[] s = (word1 + word2).toCharArray();
int n = s.length;
// f[i][j]表示子串s[i..j]的最长回文子序列长度
int[][] f = new int[n][n];
int ans = 0;
// 从后向前遍历
for (int i = n - 1; i >= 0; i--) {
// 单个字符的回文长度为1
f[i][i] = 1;
for (int j = i + 1; j < n; j++) {
if (s[i] == s[j]) {
// 两端字符相同,长度+2
f[i][j] = f[i + 1][j - 1] + 2;
// 检查是否跨两个原始字符串(i在word1,j在word2)
if (i < word1.length() && j >= word1.length()) {
// 更新最大长度
ans = Math.max(ans, f[i][j]);
}
} else {
// 两端字符不同,取较大值
f[i][j] = Math.max(f[i + 1][j], f[i][j - 1]);
}
}
}
return ans;
}
}
6. 复杂度分析
时间复杂度:O(n²)
- 双重循环遍历所有可能的i和j组合
- n为拼接后字符串的长度
空间复杂度:O(n²)
- 使用二维数组f[n][n]存储中间结果