目标检测常用的损失函数

L1损失(均方误差MSE)

在这里插入图片描述
在这里插入图片描述

优点:各点都连续光滑,方便求导,具有较为稳定的解
缺点:不是特别的稳健,因为当函数的输入值距离中心值较远的时候,使用梯度下降法求解的时候梯度很大,可能导致梯度爆炸。

L2损失(平均绝对误差MAE)

表示了预测值的平均误差幅度,而不需要考虑误差的方向
在这里插入图片描述
在这里插入图片描述

优点:无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解。
缺点:在中心点是折点,不能求导,不方便求解。

smooth L1损失函数

在这里插入图片描述
在这里插入图片描述
当|x-y|<1的时候,求导后的导数为(x-y),所以x接近0的时候的梯度也接近0
当|x-y|>=1的时候,求导后的导数为1,所以当x远离0的时候,梯度都是恒定为1

loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点(指的是距离中心较远的点)、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞。

IOU损失:

在这里插入图片描述
优点:它可以反映预测检测框与真实检测框的检测效果。
缺点:

  1. 如果两个框没有相交,根据定义,IoU=0,不能反映两者的距离大小(重合度)。同时因为loss=0,没有梯度回传,无法进行学习训练。
  2. IoU无法精确的反映两者的重合度大小。如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差
    在这里插入图片描述
GIOU:

在这里插入图片描述
在这里插入图片描述
黑色框是原图 src
绿色是真实框 gt
蓝色是预测框 pre
黄色是包含真实框和预测框的最小框Ac
U = gt+pre
IOU就是绿色框和蓝色框相交的部分

IoU取值[0,1],但GIoU有对称区间,取值范围[-1,1]。在两者重合的时候取最大值1,在两者无交集且无限远的时候取最小值-1,因此GIoU是一个非常好的距离度量指标。
与IoU只关注重叠区域不同,GIoU不仅关注重叠区域,还关注其他的非重合区域,能更好的反映两者的重合度。

DIOU

DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题
在这里插入图片描述
DIOU优点:

  1. 与GIoU loss类似,DIoU loss( [公式] )在与目标框不重叠时,仍然可以为边界框提供移动方向。
  2. DIoU loss可以直接最小化两个目标框的距离,因此比GIoU loss收敛快得多。
  3. 对于包含两个框在水平方向和垂直方向上这种情况,DIoU损失可以使回归非常快,而GIoU损失几乎退化为IoU损失。
  4. DIoU还可以替换普通的IoU评价策略,应用于NMS中,使得NMS得到的结果更加合理和有效。
CIOUS

论文考虑到bbox回归三要素中的长宽比还没被考虑到计算中,因此,进一步在DIoU的基础上提出了CIoU。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

最后,CIoU loss的梯度类似于DIoU loss,但还要考虑 [公式] 的梯度。在长宽在 [0,1] 的情况下, w^2 + h^2 的值通常很小,会导致梯度爆炸,因此在 1/ (w平方+h平方) 实现时将替换成1。

分类损失

交叉熵损失

在这里插入图片描述
举个例子怎么用:
在这里插入图片描述
在这里插入图片描述
BCEloss是交叉熵损失的一个特列,BCE只是2分类损失,但是运行的时候交叉熵损失和BCEloss还是有一点区别,交叉熵用softmax激活,BCE用Sigmoid激活运算。

BCEloss:

在这里插入图片描述
预测值y是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优

focalloss在这里插入图片描述

横轴是 pt , 纵轴是 FL
总体来说,所有曲线都是单调下降的,即 “概率越大就越忽略”
当 gamma=0 时,FL退化成CE,即蓝色线条
当 gamma 很大时,线条逐步压低到绿色位置,即各样本对于总loss的贡献受到打压;
在这里插入图片描述
使用focal_loss,阿尔法用于正样本均衡,gamma用于难易样本均衡
难易样本均衡:是易检测目标对模型训练贡献以指数式削弱
正样本预测概率为0.9是容易区分的样本,那么(1-0.9)gama次方就会很小,loss很小,就会不关注这种容易分的样本
负样本预测概率为0.1也是容易区分的样本,0.1gamma次方会很小,loss也小,不关注
负样本或者正样本概率为0.5,都是不易区分样本,那么0.5gamma次方虽然虽然也是减少,但是相对而言减少得更少一些。
所以总体来说更加关注男区分样本,减少简单样本的影响

类别权重是对正负样本进行调节。要是你知道正负样本的分布的话,负样本较少,数值就调大一些。类别权重的值域在0~1。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值