- 博客(6)
- 收藏
- 关注
原创 [论文笔记]PreyNet: Preying on Camouflaged Objects
在这项工作中,我们努力寻找准确的COD的答案,并提出了一个PreyNet,该PreyNet模拟了捕食者的两个过程,即初始探测(感觉机制)和捕食者学习(认知机制)。并且我们还使用辅助监督策略. 以前的方法采用比例序列或者特殊的值. 在本文中,我们利用估计的不确定性图为策略解码器中的多层监督提供自适应权重。为了模拟捕食者的学习过程,我们设计了一种双译码器结构,它由一个策略译码器和一个校准译码器组成,一个策略译码器根据经验对某些和不确定区域进行判断,另一个校准译码器在指导下对困难进行学习。
2022-11-17 23:27:15 748 3
原创 【论文阅读】UNet-2022: Exploring Dynamics in Non-isomorphic Architecture
最近的医学图像分割模型大多是混合的,将自注意力和卷积层集成到非同构架构中。然而,这些方法的一个潜在缺点是它们未能直观地解释为什么这种混合组合方式是有益的,这使得后续工作难以在它们之上进行改进。为了解决这个问题,我们首先分析了自注意力和卷积的权重分配机制之间的差异。
2022-10-28 20:21:22 2365 3
原创 论文笔记 - Disentangle Saliency Detection into Cascaded Detail Modeling and Body Filling
长期以来,显着对象检测一直被研究用于识别图像/视频中最具视觉吸引力的对象。 最近,已经提出了越来越多的方法,所有这些方法都依赖于轮廓/边缘信息来提高检测性能。 边缘标签要么直接放入损失中,要么用作额外的监督。 边缘和身体也可以分开学习,然后融合。 这两种方法要么导致边缘附近的高预测误差,要么无法以端到端的方式进行训练。 另一个问题是,由于缺乏有效和有效的特征融合机制,现有方法可能无法检测到各种大小的对象。 在这项工作中,我们建议将显着性检测任务分解为两个级联的子任务,即细节建模和身体填充。
2022-04-11 19:46:47 3062
原创 论文笔记——C2FNet:Context-aware Cross-level Fusion Network for Camouflaged Object Detection
由于对象与其周围环境之间的低边界对比度,伪装对象检测 (COD) 是一项具有挑战性的任务。 此外,伪装物体的外观变化很大,例如物体大小和形状,增加了准确 COD 的难度。 在本文中,我们提出了一种新颖的上下文感知跨级融合网络(C2F-Net)来解决具有挑战性的 COD 任务。 具体来说,我们提出了一种注意力诱导的跨级融合模块(ACFM),将多级特征与信息注意系数相结合。 然后将融合的特征馈送到提出的双分支全局上下文模块(DGCM),该模块产生多尺度特征表示,以利用丰富的全局上下文信息。
2022-04-08 19:08:56 3609
原创 论文笔记-DRFNet:Looking for the Detail and Context Devils: High-Resolution Salient Object Detection
论文笔记-DRFNet:Looking for the Detail and Context Devils: High-Resolution Salient Object Detection
2022-02-22 20:54:27 532
原创 论文笔记-F3Net:Fusion, Feedback and Focus for Salient Object Detection
显著性目标检测论文笔记2020-AAAI-F3Net:Fusion, Feedback and Focus for Salient Object Detection
2022-02-19 20:15:18 2521
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人