SVM总结

开始:

给定训练集:

T={(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)}
,其中 xix=Rn yiy={+1,1} , i=1,2,...,N

定义:

函数间隔

超平面(w,b)关于样本点 (xi,yi) 的函数间隔为:

γi^=yi(wxi+b)

超平面(w,b)关于训练集T的函数间隔为:
γ^=mini=1,...,Nγ^i

增加约束,使||w|| = 1,这时函数间隔称为几何间隔。

几何间隔

超平面(w,b)关于样本点 (xi,yi) 的几何间隔:

γi^=yi(w||w||xi+b||w||)

超平面(w,b)关于训练集T的几何间隔为:
γ^=mini=1,...,Nγ^i

1.线性可分

几何间隔最大化的分离超平面:

wx+b=0

相应的分类决策函数:
f(x)=sign(wx+b)

转化为优化问题:
maxw,bγ

s.t.yi(w||w||xi+b||w||)γ,i=1,2,...,N

由几何间隔和函数间隔的关系
maxw,bγ||w||

s.t. yi(wxi+b)γ,i=1,2,...,N

可以取 γ^=1

s.t. yi(wxi+b1)0,i=1,2,...,N

就推出了 凸二次规划的形式。

插入知识点:1.凸优化

minwf(w)

s.t.gi(w)0,i=1,2,...,k

s.t.hi(w)=0,i=1,2,...,l

其中,目标函数f(w)和约束函数 gi(w) 都是 Rn 上连续可微的凸函数,约束函数 hi(w) Rn 上的仿射函数。

2.拉格朗日对偶性

对于上面的凸优化问题,引入拉格朗日函数:

L(x,α,β)=f(x)+i=1kαigi(x)+j=1lβjhj(x)

其中 αi,βi 是拉格朗日乘子, αi0
θp(x)=maxα,β;αi0L(x,α,β)
则,若x违反原始问题约束,则可以取 α+ 或者取 β+ ,因此针对这些情况 θp(x) 为正无穷。相反的,若x遵循原始问题的约束,那么无论 α,θ 如何取值,由于乘以0,最后都是0,于是 θp(x)=f(x)

θp(x)={f(x),x+

minxθp(x)=minxmaxα,β;αj0L(x,α,β)

与原问题等价。
原始问题和对偶问题:
maxminL(x,α,β)minmaxL(x,α,β)

特别的,对于凸优化问题,等式成立的充要条件是KKT条件。
这里写图片描述

继续:

根据刚才补充的知识,凸二次问题等价于拉格朗日对偶问题(满足KKT条件)。

L(w,α,β)=12||w||2i=1Nαiyi(wxi+b)+i=1Nαi

其中, α=(α1,α2,...,αN)T 是拉格朗日乘子向量。
原始问题: maxminL(x,α,β)
对偶问题: minmaxL(x,α,β)

(1)求 minw,bL(w,b,α)

Lw=wi=1Nαiyixi=0

w=i=1Nαiyixi

Lb=i=1Nαiyi=0

i=1Nαiyi=0

上面两个推论代入,得
L(w,b,α)=12i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
<think>好的,我现在要帮用户用一句话总结SVM。首先,我需要回忆一下SVM的基本原理和核心思想。SVM,也就是支持向量机,是一种监督学习算法,常用于分类和回归任务。它的核心应该是在寻找一个最优的超平面,对吧?这个超平面能够将不同类别的数据点分开,并且使得间隔最大化。这里的关键词应该是“最大间隔”和“超平面”。 然后,用户要求用一句话,所以需要简洁。可能需要提到支持向量,因为算法依赖于这些关键样本来定义决策边界。所以是不是可以说,SVM通过寻找一个最大间隔的超平面,利用支持向量来进行分类? 另外,有时候SVM会处理非线性问题,这时候会用核技巧把数据映射到高维空间。不过用户可能只需要最核心的总结,可能不需要提到核方法,除非这句话能简洁涵盖。但可能一句话里加进去会太长。 再想想,有没有更准确的表达?比如“SVM是一种二分类模型,其目标是找到在特征空间中使间隔最大的分离超平面,并通过使用核方法处理非线性问题。” 但这样可能有点长,而且用户要的是一句话总结,可能需要更精炼。 或者参考维基或经典教材的定义。例如,SVM的正式定义通常是寻找能够正确划分训练数据并且几何间隔最大的分离超平面。所以可以总结为:支持向量机是一种通过最大化分类间隔来寻找最优超平面,并利用支持向量进行决策的机器学习方法。 这样是否准确?有没有遗漏关键点?比如核技巧,可能对于一句话来说,可以省略,但核心是最大间隔和支持向量。或者是否需要提到核函数? 权衡一下,用户可能希望听到最核心的机制,而不是扩展功能。所以重点放在分类和最大间隔,支持向量。可能最终的一句话可以是:“支持向量机(SVM)是一种通过寻找最大间隔超平面来进行分类的监督学习算法,其决策边界由支持向量确定。” 检查是否符合要求:是否提到了最大间隔、超平面、支持向量,以及用途是分类。是的。这样应该准确且简洁。再看看有没有错误,比如监督学习、二分类还是多分类SVM本身主要用于二分类,但也可以扩展到多分类。不过在一句话中可能不需要细分,笼统说分类即可。 确定没问题的话,就可以这样总结。</think>支持向量机(SVM)是一种通过寻找**最大间隔超平面**来分类数据的监督学习算法,其核心思想是借助**支持向量**构建最优决策边界,以提升模型的泛化能力。 **步骤解析:** 1. **目标**:在特征空间中找到一个超平面(如二维中的直线),将不同类别的样本分开。 2. **核心优化**:最大化分类间隔(即两类数据到超平面的最小距离),增强模型鲁棒性。 3. **支持向量**:超平面的位置仅由距离最近的少数样本(支持向量)决定,这些样本定义了分类边界。 4. **核技巧**:通过核函数处理非线性问题,隐式将数据映射到高维空间以实现线性可分。 **关键优势**:在高维数据、小样本场景下表现优异,且数学推导具有严格的凸优化理论支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值