SVM总结

开始:

给定训练集:

T={(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)}
,其中 xix=Rn yiy={+1,1} , i=1,2,...,N

定义:

函数间隔

超平面(w,b)关于样本点 (xi,yi) 的函数间隔为:

γi^=yi(wxi+b)

超平面(w,b)关于训练集T的函数间隔为:
γ^=mini=1,...,Nγ^i

增加约束,使||w|| = 1,这时函数间隔称为几何间隔。

几何间隔

超平面(w,b)关于样本点 (xi,yi) 的几何间隔:

γi^=yi(w||w||xi+b||w||)

超平面(w,b)关于训练集T的几何间隔为:
γ^=mini=1,...,Nγ^i

1.线性可分

几何间隔最大化的分离超平面:

wx+b=0

相应的分类决策函数:
f(x)=sign(wx+b)

转化为优化问题:
maxw,bγ

s.t.yi(w||w||xi+b||w||)γ,i=1,2,...,N

由几何间隔和函数间隔的关系
maxw,bγ||w||

s.t. yi(wxi+b)γ,i=1,2,...,N

可以取 γ^=1

s.t. yi(wxi+b1)0,i=1,2,...,N

就推出了 凸二次规划的形式。

插入知识点:1.凸优化

minwf(w)

s.t.gi(w)0,i=1,2,...,k

s.t.hi(w)=0,i=1,2,...,l

其中,目标函数f(w)和约束函数 gi(w) 都是 Rn 上连续可微的凸函数,约束函数 hi(w) Rn 上的仿射函数。

2.拉格朗日对偶性

对于上面的凸优化问题,引入拉格朗日函数:

L(x,α,β)=f(x)+i=1kαigi(x)+j=1lβjhj(x)

其中 αi,βi 是拉格朗日乘子, αi0
θp(x)=maxα,β;αi0L(x,α,β)
则,若x违反原始问题约束,则可以取 α+ 或者取 β+ ,因此针对这些情况 θp(x) 为正无穷。相反的,若x遵循原始问题的约束,那么无论 α,θ 如何取值,由于乘以0,最后都是0,于是 θp(x)=f(x)

θp(x)={f(x),x+

minxθp(x)=minxmaxα,β;αj0L(x,α,β)

与原问题等价。
原始问题和对偶问题:
maxminL(x,α,β)minmaxL(x,α,β)

特别的,对于凸优化问题,等式成立的充要条件是KKT条件。
这里写图片描述

继续:

根据刚才补充的知识,凸二次问题等价于拉格朗日对偶问题(满足KKT条件)。

L(w,α,β)=12||w||2i=1Nαiyi(wxi+b)+i=1Nαi

其中, α=(α1,α2,...,αN)T 是拉格朗日乘子向量。
原始问题: maxminL(x,α,β)
对偶问题: minmaxL(x,α,β)

(1)求 minw,bL(w,b,α)

Lw=wi=1Nαiyixi=0

w=i=1Nαiyixi

Lb=i=1Nαiyi=0

i=1Nαiyi=0

上面两个推论代入,得
L(w,b,α)=12i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值