1. 数据最好做归一化处理,若数值之间大小差别过大(如:最大值和最小值差了几个量级),会出现过拟合现象
2. 训练数据样本不要过少(不要低于样本特征的个数),会出现过拟合现象
3. 训练数据原则上:特征越多,分类越准确;但是特征越多,训练时间越长;(具体取值自己决定)
1. 数据最好做归一化处理,若数值之间大小差别过大(如:最大值和最小值差了几个量级),会出现过拟合现象
2. 训练数据样本不要过少(不要低于样本特征的个数),会出现过拟合现象
3. 训练数据原则上:特征越多,分类越准确;但是特征越多,训练时间越长;(具体取值自己决定)