重力 | 万有引力 | 库仑力 | |
---|---|---|---|
力大小 | m g mg mg | G M m r 2 G\frac{Mm}{r^2} Gr2Mm | Q 1 Q 2 4 π ϵ 0 r 2 \frac{Q_1Q_2}{4\pi\epsilon_0r^2} 4πϵ0r2Q1Q2 |
常用基准 | 地表面( h 2 = 0 h_2=0 h2=0) | 无穷远处 r 1 = ∞ r_1=\infty r1=∞ | 无穷远处 r = ∞ r=\infty r=∞ |
势(单位质量的势能) | g h 1 gh_1 gh1 | − G M r -G\frac{M}{r} −GrM | Q 4 π ϵ 0 r \frac{Q}{4\pi\epsilon_0 r} 4πϵ0rQ |
势的SI unit | J / k g J/kg J/kg | J / k g J/kg J/kg | J / C J/C J/C |
势能 (与常用基准之间的势能差) | m g h 1 mgh_1 mgh1 | − G M m r -G\frac{Mm}{r} −GrMm | Q 1 Q 2 4 π ϵ 0 r \frac{Q_1Q_2}{4 \pi \epsilon_0 r} 4πϵ0rQ1Q2 |
势能差 |
m
g
Δ
h
mg\Delta h
mgΔh ( 其中 Δ h = h 1 − h 2 ) (其中 \Delta h=h_1-h_2) (其中Δh=h1−h2) | ∫ r 1 r 2 G M m r 2 d r \int_{r1}^{r2} G\frac{Mm}{r^2}dr ∫r1r2Gr2Mmdr | ∫ r 1 r 2 Q 1 Q 2 4 π ϵ 0 r 2 d r \int_{r1}^{r2} \frac{Q_1Q_2}{4 \pi \epsilon_0 r^2}dr ∫r1r24πϵ0r2Q1Q2dr |
MIT定义
The gravitational potential is the potential energy in the field due to per unit mass.【1】(单位质量的势能)
往届考试真题中的Mark Scheme对Gravitational Potential的计算要求
小节
这块的资料非常少
几乎没有实际意义,即便是天体物理也是以Gravitational Potential Energy关注度较高,极少讨论Gravitational Potential