SVM(三):非线性支持向量机

3.1 问题定义

现实任务中,训练样本经常不是线性可分的,即原始样本空间中并不存在一个能正确划分两类样本的超平面。
在这里插入图片描述
对于这样的问题,基于Mercer核展开定理,通过内积函数定义的非线性变换,将样本从原始空间映射到一个高维特征空间(Hibbert空间),使得样本在这个高维特征空间内线性可分(升维线性化)。
在这里插入图片描述
ϕ ( x ) \phi(\boldsymbol x) ϕ(x)表示将 x \boldsymbol x x映射后的特征向量,在特征空间中划分超平面对应的模型可表示为
f ( x ) = w T ϕ ( x ) + b f(\boldsymbol x) = \boldsymbol w^T \phi(\boldsymbol x) + b f(x)=wTϕ(x)+b优化目标为
min ⁡    1 2 ∣ ∣ w ∣ ∣ 2 s . t .      y i ( w T ϕ ( x i ) + b ) ≥ 1 , i = 1 , 2 , . . . m \begin{aligned} & \min \; \frac{1}{2}||\boldsymbol w||^2 \\ & s.t. \;\; y_i(\boldsymbol w^T \phi(\boldsymbol x_i) + b) \geq 1,i =1,2,...m \end{aligned} min21w2s.t.yi(wTϕ(xi)+b)1,i=1,2,...m其对偶问题为
max ⁡ α ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y i y j ϕ ( x i ) T ϕ ( x j ) s . t .    ∑ i = 1 m α i y i = 0 , α i ≥ 0 ,    i = 1 , 2 , . . . m \begin{aligned} \max_{\alpha} & \sum\limits_{i=1}^{m}\alpha_i - \frac{1}{2}\sum\limits_{i=1,j=1}^{m}\alpha_i\alpha_jy_iy_j\phi(\boldsymbol x_i)^T \phi(\boldsymbol x_j) \\ s.t. \; & \sum\limits_{i=1}^{m}\alpha_iy_i = 0, \\ & \alpha_i \geq 0, \; i=1,2,...m \end{aligned} αmaxs.t.i=1mαi21i=1,j=1mαiαjyiyjϕ(xi)Tϕ(xj)i=1mαiyi=0,αi0,i=1,2,...m

该问题和线性可分SVM的优化目标函数的区别仅仅是将内积 x i x j \boldsymbol x_i \boldsymbol x_j xixj替换为 ϕ ( x i ) T ϕ ( x j ) \phi (\boldsymbol x_i)^T \phi(\boldsymbol x_j) ϕ(xi)Tϕ(xj)

ϕ ( x i ) T ϕ ( x j ) \phi (\boldsymbol x_i)^T \phi(\boldsymbol x_j) ϕ(xi)Tϕ(xj) x i \boldsymbol x_i xi x j \boldsymbol x_j xj映射到特征空间后的内积,由于特征空间维数很高,甚至是无穷维,因此直接计算 ϕ ( x i ) T ϕ ( x j ) \phi (\boldsymbol x_i)^T \phi(\boldsymbol x_j) ϕ(xi)Tϕ(xj)通常是困难的。

如对于一个2维特征的数据 ( x 1 , x 2 ) (x_1,x_2) (x1,x2),需要将其映射到5维 ( 1 , x 1 , x 2 , x 1 2 , x 2 2 , x 1 x 2 ) (1, x_1, x_2, x_{1}^2, x_{2}^2, x_{1}x_2) (1,x1,x2,x12,x22,x1x2)来做特征的内积。

3.2 核函数

假设 ϕ \phi ϕ是一个从低维的输入空间 χ \chi χ(欧式空间的子集或者离散集合)到高维的希尔伯特空间 H \mathcal{H} H的映射。如果存在函数 K ( , ) \boldsymbol K( ,) K(,) 对于任意 x i , x j ∈ χ \boldsymbol x_i, \boldsymbol x_j \in \chi xi,xjχ都有:

K ( x i , x j ) = < ϕ ( x i ) , ϕ ( x j ) > = ϕ ( x i ) T ϕ ( x j ) \boldsymbol K(x_i,x_j) = <\phi(\boldsymbol x_i),\phi(\boldsymbol x_j)> = \phi(\boldsymbol x_i)^T\phi(\boldsymbol x_j) K(xi,xj)=<ϕ(xi),ϕ(xj)>=ϕ(xi)Tϕ(xj)

x i \boldsymbol x_i xi x j \boldsymbol x_j xj在特征空间的内积等于它们在原始样本空间中通过函数 K ( , ) \boldsymbol K( , ) K(,)计算的结果,则称 K ( , ) \boldsymbol K( , ) K(,)为核函数。
核函数使得计算在低维特征空间中进行,避免了高维特征空间中的巨大计算量,同时还利用了高维空间线性可分的特性。

凡是满足Mercer定理的函数都可以作为支持向量机的核函数。
一般所说核函数为正定核函数(正定核比Mercer更具一般性),一个函数为正定核函数的充分必要条件是如下:

对于任意 x i ∈ χ , i = 1 , 2 , 3... m x_i \in \chi, i=1,2,3...m xiχ,i=1,2,3...m K ( ⋅ , ⋅ ) \boldsymbol K(\cdot , \cdot ) K(,)是正定核函数,当且仅当 K ( x i , x j ) \boldsymbol K(x_i,x_j) K(xi,xj)对应的Gram矩阵 K = [ K ( x i , x j ) ] \boldsymbol K = \bigg[ K(x_i, x_j )\bigg] K=[K(xi,xj)]为半正定矩阵。

常用核函数如下
在这里插入图片描述
径向基函数核(RBF,Radial basis Function)又称高斯核。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隐私无忧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值