Tensorflow 模型持久化

为了使训练模型可以复用,需要将训练得到的神经网络模型持久化。Tensorflow通过tf.train.Saver类实现模型的保存和还原。

Tensorflow的模型一般会保存在后缀为.ckpt的文件中, checkpoint 保存目录下所有的模型文件列表。

# 1. 保存计算两个变量和的模型。
v1 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
v2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
result = v1 + v2

init_op = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init_op)
    saver.save(sess, "Saved_model/model.ckpt")
    
# 2. 加载保存了两个变量和的模型。
with tf.Session() as sess:
    saver.restore(sess, "Saved_model/model.ckpt")
    print(sess.run(result))

Tensorflow支持保存或加载部分变量,比如一个已训练好的8层神经网络,想在此基础上尝试训练一个新的10层神经网络,可以将前面8层网络的参数直接加载到模型中,仅对最后两层神经网络进行训练。

为保存或加载部分变量,在声明tf.train.Saver类时可以提供一个列表来指定需要保存或加载的变量。Tensorflow通过字典将模型保存时的变量名和需要加载的变量联系起来。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读