树-阶数-B+树-B树-数据库索引方式

树的阶数:

我们描述一颗B树时需要指定它的阶数,阶数表示了一个结点最多有多少个孩子结点,一般用字母m表示阶数。当m取2时,就是我们常见的二叉搜索树。

 

一颗m阶的B树定义如下:

1)每个结点最多有m-1个关键字。

2)根结点最少可以只有1个关键字。

3)非根结点至少有Math.ceil(m/2)-1个关键字。

4)每个结点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。

5)所有叶子结点都位于同一层,或者说根结点到每个叶子结点的长度都相同。

四阶树

上图是一颗阶数为4的B树。在实际应用中的B树的阶数m都非常大(通常大于100),所以即使存储大量的数据,B树的高度仍然比较小。每个结点中存储了关键字(key)和关键字对应的数据(data),以及孩子结点的指针。我们将一个key和其对应的data称为一个记录但为了方便描述,除非特别说明,后续文中就用key来代替(key, value)键值对这个整体。在数据库中我们将B树(和B+树)作为索引结构,可以加快查询速速,此时B树中的key就表示键,而data表示了这个键对应的条目在硬盘上的逻辑地址。

 

1.2 B树的插入操作

插入操作是指插入一条记录,即(key, value)的键值对。如果B树中已存在需要插入的键值对,则用需要插入的value替换旧的value。若B树不存在这个key,则一定是在叶子结点中进行插入操作。

1)根据要插入的key的值,找到叶子结点并插入。

2)判断当前结点key的个数是否小于等于m-1,若满足则结束,否则进行第3步。

3)以结点中间的key为中心分裂成左右两部分,然后将这个中间的key插入到父结点中,这个key的左子树指向分裂后的左半部分,这个key的右子支指向分裂后的右半部分,然后将当前结点指向父结点,继续进行第3步。

 

下面以5阶B树为例,介绍B树的插入操作,在5阶B树中,结点最多有4个key,最少有2个key

a)在空树中插入39

clip_image002[4]

此时根结点就一个key,此时根结点也是叶子结点


b)继续插入22,97和41

clip_image004

根结点此时有4个key


c)继续插入53

clip_image006

插入后超过了最大允许的关键字个数4,所以以key值为41为中心进行分裂,结果如下图所示,分裂后当前结点指针指向父结点,满足B树条件,插入操作结束。当阶数m为偶数时,需要分裂时就不存在排序恰好在中间的key,那么我们选择中间位置的前一个key或中间位置的后一个key为中心进行分裂即可。

clip_image008


d)依次插入13,21,40,同样会造成分裂,结果如下图所示。

clip_image010


e)依次插入30,27, 33 ;36,35,34 ;24,29,结果如下图所示。

clip_image012


f)插入key值为26的记录,插入后的结果如下图所示。

clip_image014

当前结点需要以27为中心分裂,并向父结点进位27,然后当前结点指向父结点,结果如下图所示。

clip_image016

进位后导致当前结点(即根结点)也需要分裂,分裂的结果如下图所示。

clip_image018

分裂后当前结点指向新的根,此时无需调整。


g)最后再依次插入key为17,28,29,31,32的记录,结果如下图所示。

clip_image020


在实现B树的代码中,为了使代码编写更加容易,我们可以将结点中存储记录的数组长度定义为m而非m-1,这样方便底层的结点由于分裂向上层插入一个记录时,上层有多余的位置存储这个记录。同时,每个结点还可以存储它的父结点的引用,这样就不必编写递归程序。

在实现B树的代码中,为了使代码编写更加容易,我们可以将结点中存储记录的数组长度定义为m而非m-1,这样方便底层的结点由于分裂向上层插入一个记录时,上层有多余的位置存储这个记录。同时,每个结点还可以存储它的父结点的引用,这样就不必编写递归程序。

般来说,对于确定的m和确定类型的记录,结点大小是固定的,无论它实际存储了多少个记录。但是分配固定结点大小的方法会存在浪费的情况,比如key为28,29所在的结点,还有2个key的位置没有使用,但是已经不可能继续在插入任何值了,因为这个结点的前序key是27,后继key是30,所有整数值都用完了。所以如果记录先按key的大小排好序,再插入到B树中,结点的使用率就会很低,最差情况下使用率仅为50%。

1.3 B树的删除操作

删除操作是指,根据key删除记录,如果B树中的记录中不存对应key的记录,则删除失败。

1)如果当前需要删除的key位于非叶子结点上,则用后继key(这里的后继key均指后继记录的意思)覆盖要删除的key,然后在后继key所在的子支中删除该后继key。此时后继key一定位于叶子结点上,这个过程和二叉搜索树删除结点的方式类似。删除这个记录后执行第2步

2)该结点key个数大于等于Math.ceil(m/2)-1,结束删除操作,否则执行第3步。

3)如果兄弟结点key个数大于Math.ceil(m/2)-1,则父结点中的key下移到该结点,兄弟结点中的一个key上移,删除操作结束。

否则,将父结点中的key下移与当前结点及它的兄弟结点中的key合并,形成一个新的结点。原父结点中的key的两个孩子指针就变成了一个孩子指针,指向这个新结点。然后当前结点的指针指向父结点,重复上第2步。

有些结点它可能即有左兄弟,又有右兄弟,那么我们任意选择一个兄弟结点进行操作即可。

下面以5阶B树为例,介绍B树的删除操作,5阶B树中,结点最多有4个key,最少有2个key


a)原始状态

clip_image021


b)在上面的B树中删除21,删除后结点中的关键字个数仍然大于等2,所以删除结束。

clip_image023


c)在上述情况下接着删除27。从上图可知27位于非叶子结点中,所以用27的后继替换它。从图中可以看出,27的后继为28,我们用28替换27,然后在28(原27)的右孩子结点中删除28。删除后的结果如下图所示。

clip_image025

删除后发现,当前叶子结点的记录的个数小于2,而它的兄弟结点中有3个记录(当前结点还有一个右兄弟,选择右兄弟就会出现合并结点的情况,不论选哪一个都行,只是最后B树的形态会不一样而已),我们可以从兄弟结点中借取一个key。所以父结点中的28下移,兄弟结点中的26上移,删除结束。结果如下图所示。

clip_image027


d)在上述情况下接着32,结果如下图。

clip_image029

当删除后,当前结点中只key,而兄弟结点中也仅有2个key。所以只能让父结点中的30下移和这个两个孩子结点中的key合并,成为一个新的结点,当前结点的指针指向父结点。结果如下图所示。

clip_image031

当前结点key的个数满足条件,故删除结束。


e)上述情况下,我们接着删除key为40的记录,删除后结果如下图所示。

clip_image033

同理,当前结点的记录数小于2,兄弟结点中没有多余key,所以父结点中的key下移,和兄弟(这里我们选择左兄弟,选择右兄弟也可以)结点合并,合并后的指向当前结点的指针就指向了父结点。

clip_image035

同理,对于当前结点而言只能继续合并了,最后结果如下所示。

clip_image037

合并后结点当前结点满足条件,删除结束。

 

2.B+树

2.1 B+树的定义

2.1 B+树的定义

clip_image039

各种资料上B+树的定义各有不同,一种定义方式是关键字个数和孩子结点个数相同。这里我们采取维基百科上所定义的方式,即关键字个数比孩子结点个数小1,这种方式是和B树基本等价的。上图就是一颗阶数为4的B+树。

除此之外B+树还有以下的要求。

1)B+树包含2种类型的结点:内部结点(也称索引结点)和叶子结点。根结点本身即可以是内部结点,也可以是叶子结点。根结点的关键字个数最少可以只有1个。

2)B+树与B树最大的不同是内部结点不保存数据,只用于索引,所有数据(或者说记录)都保存在叶子结点中。

3) m阶B+树表示了内部结点最多有m-1个关键字(或者说内部结点最多有m个子树),阶数m同时限制了叶子结点最多存储m-1个记录。

4)内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。

5)每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。

2.2 B+树的插入操作

1)若为空树,创建一个叶子结点,然后将记录插入其中,此时这个叶子结点也是根结点,插入操作结束。

2)针对叶子类型结点:根据key值找到叶子结点,向这个叶子结点插入记录。插入后,若当前结点key的个数小于等于m-1,则插入结束。否则将这个叶子结点分裂成左右两个叶子结点,左叶子结点包含前m/2个记录,右结点包含剩下的记录,将第m/2+1个记录的key进位到父结点中(父结点一定是索引类型结点),进位到父结点的key左孩子指针向左结点,右孩子指针向右结点。将当前结点的指针指向父结点,然后执行第3步。

3)针对索引类型结点:若当前结点key的个数小于等于m-1,则插入结束。否则,将这个索引类型结点分裂成两个索引结点,左索引结点包含前(m-1)/2个key,右结点包含m-(m-1)/2个key,将第m/2个key进位到父结点中,进位到父结点的key左孩子指向左结点, 进位到父结点的key右孩子指向右结点。将当前结点的指针指向父结点,然后重复第3步。

下面是一颗5阶B树的插入过程,5阶B数的结点最少2个key,最多4个key。

a)空树中插入5

clip_image041


b)依次插入8,10,15

clip_image043


c)插入16

clip_image045

插入16后超过了关键字的个数限制,所以要进行分裂。在叶子结点分裂时,分裂出来的左结点2个记录,右边3个记录,中间key成为索引结点中的key,分裂后当前结点指向了父结点(根结点)。结果如下图所示。

clip_image047

当然我们还有另一种分裂方式,给左结点3个记录,右结点2个记录,此时索引结点中的key就变为15。


d)插入17

clip_image049


e)插入18,插入后如下图所示

clip_image051

当前结点的关键字个数大于5,进行分裂。分裂成两个结点,左结点2个记录,右结点3个记录,关键字16进位到父结点(索引类型)中,将当前结点的指针指向父结点。

clip_image053

当前结点的关键字个数满足条件,插入结束。


f)插入若干数据后

clip_image055


g)在上图中插入7,结果如下图所示

clip_image057

当前结点的关键字个数超过4,需要分裂。左结点2个记录,右结点3个记录。分裂后关键字7进入到父结点中,将当前结点的指针指向父结点,结果如下图所示。

clip_image059

当前结点的关键字个数超过4,需要继续分裂。左结点2个关键字,右结点2个关键字,关键字16进入到父结点中,将当前结点指向父结点,结果如下图所示。

clip_image061

当前结点的关键字个数满足条件,插入结束。

2.3 B+树的删除操作

如果叶子结点中没有相应的key,则删除失败。否则执行下面的步骤

1)删除叶子结点中对应的key。删除后若结点的key的个数大于等于Math.ceil(m-1)/2 – 1,删除操作结束,否则执行第2步。

2)若兄弟结点key有富余(大于Math.ceil(m-1)/2 – 1),向兄弟结点借一个记录,同时用借到的key替换父结(指当前结点和兄弟结点共同的父结点)点中的key,删除结束。否则执行第3步。

3)若兄弟结点中没有富余的key,则当前结点和兄弟结点合并成一个新的叶子结点,并删除父结点中的key(父结点中的这个key两边的孩子指针就变成了一个指针,正好指向这个新的叶子结点),将当前结点指向父结点(必为索引结点),执行第4步(第4步以后的操作和B树就完全一样了,主要是为了更新索引结点)。

4)若索引结点的key的个数大于等于Math.ceil(m-1)/2 – 1,则删除操作结束。否则执行第5步

5)若兄弟结点有富余,父结点key下移,兄弟结点key上移,删除结束。否则执行第6步

6)当前结点和兄弟结点及父结点下移key合并成一个新的结点。将当前结点指向父结点,重复第4步。

注意,通过B+树的删除操作后,索引结点中存在的key,不一定在叶子结点中存在对应的记录。

下面是一颗5阶B树的删除过程,5阶B数的结点最少2个key,最多4个key。


a)初始状态

clip_image063


b)删除22,删除后结果如下图

clip_image065

删除后叶子结点中key的个数大于等于2,删除结束


c)删除15,删除后的结果如下图所示

clip_image067

删除后当前结点只有一个key,不满足条件,而兄弟结点有三个key,可以从兄弟结点借一个关键字为9的记录,同时更新将父结点中的关键字由10也变为9,删除结束。

clip_image069


d)删除7,删除后的结果如下图所示

clip_image071

当前结点关键字个数小于2,(左)兄弟结点中的也没有富余的关键字(当前结点还有个右兄弟,不过选择任意一个进行分析就可以了,这里我们选择了左边的),所以当前结点和兄弟结点合并,并删除父结点中的key,当前结点指向父结点。

clip_image073

此时当前结点的关键字个数小于2,兄弟结点的关键字也没有富余,所以父结点中的关键字下移,和两个孩子结点合并,结果如下图所示。

clip_image075

 

 

B树与B+树的区别

 结构上的区别

B树中关键字集合分布在整棵树中,叶节点中不包含任何关键字信息,而B+树关键字集合分布在叶子结点中,非叶节点只是叶子结点中关键字的索引; B树中任何一个关键字只出现在一个结点中,而B+树中的关键字必须出现在叶节点中,也可能在非叶结点中重复出现;

为什么说B+树比B树更适合实际应用中操作系统的文件索引和数据库索引?

B+树的内部节点只存储了关键字,而没有存储关键字的数据的指针,所以内部节点比B树小。那么磁盘就能加载更多的关键字信息,那么磁盘io的次数就小,而io是影响检索效率的最大因素。

B+树的磁盘读写代价更低。B+树的内部结点并没有指向关键字具体信息的指针,其内部结点比B树小,盘块能容纳的结点中关键字数量更多,一次性读入内存中可以查找的关键字也就越多,相对的,IO读写次数也就降低了。而IO读写次数是影响索引检索效率的最大因素。

 

B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短,只要找到关键字即可确定记录的存在,其性能等价于在关键字全集内做一次二分查找。而在B+树中,顺序检索比较明显,随机检索时,任何关键字的查找都必须走一条从根节点到叶节点的路,所有关键字的查找路径长度相同,导致每一个关键字的查询效率相当。 (数据库索引采用B+树的主要原因是,)B-树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低)。

 

 

因为一个索引节点就表示一个磁盘页,页的换入换出次数越多,表示磁盘IO次数越多,越低效。

 

Q0.数据库索引有哪些,优缺点?


hash索引和B+树索引
hash索引等值查询效率高,但是不能排序,因此不能进行范围查询
B+树索引数据有序,能够进行范围查询

Q1.为什么不用二叉查找树作为数据库索引?


二叉查找树,查找到指定数据,效率其实很高logn。但是数据库索引文件有可能很大,关系型数据存储了上亿条数据,索引文件大则上G,不可能全部放入内存中,
而是需要的时候换入内存,方式是磁盘页。一般来说树的一个节点就是一个磁盘页。如果使用二叉查找树,那么每个节点存储一个元素,查找到指定元素,需要进行大量的磁盘IO,效率很低。
而B树解决了这个问题,通过单一节点包含多个data,大大降低了树的高度,大大减少了磁盘IO次数。

Q2.B树和二叉查找树的性能对比?


B树包括B+树的设计思想都是尽可能的降低树的高度,以此降低磁盘IO的次数,因为一个索引节点就表示一个磁盘页,页的换入换出次数越多,表示磁盘IO次数越多,越低效。
B树算法减少定位数据所在的节点时所经历的磁盘IO次数,从而加快存取速度
假设一个节点可以容纳100个值,那么3层的B树可以容纳100万个数据。(根节点100值,第二层可以存储99个节点(k-1),也就是99*100 个值,第三层可以存储
(99*100-1)*100)结果是近似100万个数据。而如果使用二叉查找树,则需要将近20层,也就是进行20次磁盘IO,性能差距如此之大。
如mongoDB数据库使用,单次查询平均快于Mysql(但侧面来看Mysql至少平均查询耗时差不多)。

Q3.B+对比B树的优点?

(因为B树的每个节点除了存储指向子节点的索引之外,还有data域(关键字(数据的指针)),因此单一节点存储的指向子节点的索引并不是很多,树高度较高,磁盘IO次数较多,
而B+树单一节点存储的指向子节点的索引更多,B+树空间利用率高,因此B+树高度更低,磁盘IO次数更少,性能更好。

这段话有问题:树高度较高不对,b+树更高。正确的说法是,b+树的中间节点只存储了关键字而没有存储数据的指针,而B树既存储了关键字又存储了数据的指针,所以B+树的中间节点占用的磁盘更小,那么每个节点的磁盘叶也就小,那么磁盘就能加载更多的磁盘叶,磁盘叶交换次数更低,那么磁盘IO 就会降低。
因为B树的中间节点存储了数据,所以整个树的每一层都有可能查找到要查找的数据,查询性能不稳定,
而B+树所有的data都存储在叶子节点,且叶子节点位于同一层,因此查询性能稳定。
B树如果想要进行范围查找,需要频繁的进行二叉树的中序遍历,进行范围查找比较复杂,
B+树要查找的元素都位于叶子节点,且连接形成有序链表,便于范围查找。

Q4.B树,B+树使用场景。


B树主要用于文件系统,和部分数据库索引,如文档型数据库mongodb
B+树主要用于mysql数据库索引。

Q5.为什么数据库索引不用红黑树而用B+树?


红黑树当插入删除元素的时候会进行频繁的变色与旋转(左旋,右旋),来保证红黑树的性质,浪费时间。
但是当数据量较小,数据完全可以放入内存中,不需要进行磁盘IO,这时候,红黑树时间复杂度比B+树低。
比如TreeSet TreeMap 和HashMap (jdk1.8)就是使用红黑树作为底层数据结构。

 

 

 

 

 

 

 

评论 3 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

apriaaaa

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值