[洛谷]P1681 最大正方形II (#线性dp)

题目背景

忙完了学校的事,v神终于可以做他的“正事”:陪女朋友散步。一天,他和女朋友走着走着,不知不觉就来到了一个千里无烟的地方。v神正要往回走,如发现了一块牌子,牌子上有有一行小字和一张图,小字说道:“找到图上最大的交错正方形之后和我联系,这块地就是你的了。”在房价疯长的年代,v神当然不愿错过这个机会,于是开始找了起来……以v神的能力当然找不出来了,你能帮v神找出来吗?

题目描述

图上有一个矩阵,由N*M个格子组成,这些格子由两种颜色构成,黑色和白色。请找到面积最大的且内部是黑白交错(即两个相连的正方形颜色不能相同)的正方形。

输入格式

第一行两个整数N和M,分别表示行数和列数。接下来有N行,每行M个数,0或1分别表示这个格子是黑色或白色。

输出格式

仅有一行,表示满足条件最大正方形的 边长

输入输出样例

输入 #1复制

3 3
0 1 0
1 0 0
1 1 1

输出 #1复制

2

说明/提示

样例解释:

(1,1)到(2,2)这个正方形是满足条件的,它的边长是2

数据范围约定:

对于30%的数据,N <= 20

对于60%的数据,N <=300

对于100%的数据,N <= 1500


思路

其实是最大正方形的变形。

正方形那题是令dp[i][j]是以(i,j)为右下角能得到的最大正方形边长,而这次只要加一个维度判断黑白格就行了。。

令dp[i][j][0/1]是以(i,j)为右下角,且该点上为0/1时能得到的最大正方形边长,则:

1.当a[i][j]=0时

dp[i][j][0]=min(dp[i-1][j][1],dp[i][j-1][1],dp[i-1][j-1][0])+1

2.当a[i][j]=1时

dp[i][j][1]=min(dp[i-1][j][0],dp[i][j-1][0],dp[i-1][j-1][1])+1

这里来着重讲一下为什么状态转移方程中为什么要取min而不是取max。

你想啊,点(i,j)可以从(i-1,j)转移过来,也可以从(i,j-1)转移过来,也可以从(i-1,j-1)转移过来。这3个点要同时兼顾,而(i,j)是决定存在性问题的,如果我取max,我这边可能满足条件,但就不保证其他两边满足条件了。如果你不能理解,我们举个例子就明白了:

假如有一个a数组a[4][4]:

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0

则dp数组:(这里dp数组用2维表示,为了举例方便)

1

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2

1 1 1 1
1 0 0 0
0 0 0 0
0 0 0 0

在dp[2][2]中,显然可以从dp[1][2],dp[2][1],dp[1][1]这3个点转移,看一下a数组:

1 0
0 1

是可以转移的,于是dp数组

1 1
1 2

dp数组

3

1 1 1 1
1 2 2 2
1 2 2 2
1 2 2 0

等等,dp[3][3]应该为3啊!

好。

1 1 1 1
1 2 2 2
1 2 3 2
1 2 2 0

那么我们接着看dp[4][3],发现dp[4][2]=2,dp[3][3]=3,dp[3][2]=2,周围有2个2,1个3,选哪个呢?

好,按照我们之前的惯性思维,如果取max的话,也就是选dp[3][3]的话,则dp数组:

1 1 1 1
1 2 2 2
1 2 3 2
1 2 4 0

发现它并不能构成边长为4的正方形!所以要选边长为2的。

最后dp数组:

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 0

也就是说,dp[i][j]的选择,是要兼顾dp[i-1][j],dp[i][j-1],dp[i-1][j-1]的最小值的。如果取最大值的话,显然不能保证dp[i][j]是否还能正确。取最小值是为了能保证dp[i][j]也能满足条件,随着i和j的增大,dp[i][j]一定能保证单调递增的。

#include <stdio.h>
#include <iostream>
#define inf 2e9+7
using namespace std;
int dp[1501][1501][2],a[1501][1501],n,m,s;
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	register int i,j;
	cin>>n>>m;
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=m;j++)
		{
			cin>>a[i][j];
		}
	}
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=m;j++)
		{
			if(a[i][j]==0)
			{
				dp[i][j][0]=min(min(dp[i-1][j][1],dp[i][j-1][1]),dp[i-1][j-1][0])+1;
				s=max(s,dp[i][j][0]);
			}
			if(a[i][j]==1)
			{
				dp[i][j][1]=min(min(dp[i-1][j][0],dp[i][j-1][0]),dp[i-1][j-1][1])+1;
				s=max(s,dp[i][j][1]);
			}
		}
	}
	cout<<s<<endl;
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值