A.pro读算法の6:快速搞定dfs算法

61 篇文章 1 订阅
17 篇文章 0 订阅

A.pro不喜欢说那么长的概念和定义,因为那实在是太烧脑了,像我这种蒟蒻看个5分钟就该滚回去睡觉了。

那么,我们需要在最短的时间内搞定这个女装山脉(雾)dfs。

dfs算法,即深度优先算法(Depth First Search)。理解深搜的重要关键点是在于解决“现在该怎么做”。至于“接下来该怎么做”和“现在该怎么做”是一样的。先举个例子。


全排列问题

题目描述

输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。

我们可以模拟出n个盒子和n张卡片,我们需要将n张卡片分别放到n个盒子里,且每个盒子只能放1张卡片,那有多少种方案呢?

我们来模拟一下放卡片。

现在放了第1张卡片,接下来亦是如此。

产生排列"1 2 3"。

经过综上,已经完成了一种排列。那是不是就结束了呢?显然不是!因为产生了一种排列后需要立即返回,现在我们要把第3张卡片收回。

取回了第3张卡片后,发现手里仍然只有第3张卡片,没有别的选择,于是不得不把2号卡片收回。

现在手里有2张卡片了,分别是2、3号卡片。现在需要把3号卡片放入第2个盒子里,放好后再把2号卡片放到3号盒子里,产生排列"1 3 2"。

接下来按照上面的程序去模拟,会依次生成所有排列"2 1 3"、"2 3 1"、"3 1 2"、"3 2 1"。

这个模拟的过程,就是dfs的基本操作。

现在请出代码。

考虑2个情况:1是如何往盒子里放卡片,2是放过的卡片就不能放到其他盒子里了,因为一个盒子只能放1个卡片。这里1个for循环和标记判断就能搞定。

for(i=1;i<=n;i++)//从1到n个盒子产生排列 
{
	if(b[i]==0)//如果卡片在手上,b[i]==0表示第i号卡片在手上 
	{
		a[step]=i;//将第i个卡片放入第step个盒子里 
		b[i]=1;//标记第i号卡片不在手上 
	}
}

这里a数组是表示小盒子,b数组是标记卡片是否在手上。step表示正处在第step个盒子上。

OK,现在已经处理掉第step个盒子了,接下来往深处走,处理第step+1个盒子。如何处理step+1个盒子呢?其实和处理第step个盒子是一样的。显然我们需要把刚才处理第step个盒子封装成函数。

inline void dfs(int step)//处理第step个盒子 
{
	for(i=1;i<=n;i++)//从1到n个盒子产生排列 
	{
		if(b[i]==0)//如果卡片在手上,b[i]==0表示第i号卡片在手上 
		{
			a[step]=i;//将第i个卡片放入第step个盒子里 
			b[i]=1;//标记第i号卡片不在手上 
		}
	}
	return;
}

好,写成函数就好办了,在处理完第step个盒子后,就要处理第step+1个盒子,方法就是dfs(step+1)。

inline void dfs(int step)//处理第step个盒子 
{
	for(i=1;i<=n;i++)//从1到n个盒子产生排列 
	{
		if(b[i]==0)//如果卡片在手上,b[i]==0表示第i号卡片在手上 
		{
			a[step]=i;//将第i个卡片放入第step个盒子里 
			b[i]=1;//标记第i号卡片不在手上
			dfs(step+1);//通过递归实现处理下一个盒子
			b[i]=0;//一定要把刚才尝试的卡片收回,才能进行下一次尝试 
		}
	}
	return;
}

上面b[i]=0十分重要,因为在一次摆放尝试结束返回时,如果不把刚才的卡片收回,那将无法进行下一次摆放。

还有一个问题,什么时候才能输出一个满足要求的序列呢?我们再回到那张模拟图。

由图可知,当满足条件时应该就是卡片全部都在盒子里。当我们要处理第n+1个盒子时,说明前n个盒子都已经放好卡片了。

inline void dfs(int step)//处理第step个盒子 
{
	if(step==n+1)//如果前面n个盒子已经排列好 
	{
		for(i=1;i<=n;i++)//输出 
		{
			cout<<a[i]<<' ';
		}
		cout<<endl;
		return;//非常重要!返回之前一步,也就是最近调用一次dfs的地方,否则程序将无止境地调用下去 
	} 
	for(i=1;i<=n;i++)//从1到n个盒子产生排列 
	{
		if(b[i]==0)//如果卡片在手上,b[i]==0表示第i号卡片在手上 
		{
			a[step]=i;//将第i个卡片放入第step个盒子里 
			b[i]=1;//标记第i号卡片不在手上
			dfs(step+1);//通过递归实现处理下一个盒子
			b[i]=0;//一定要把刚才尝试的卡片收回,才能进行下一次尝试 
		}
	}
	return;
}

完整代码如下。

#include <stdio.h>
#include <iostream>
using namespace std;
int a[101],b[101],n;
void print()
{
	int i;
	for(i=1;i<=n;i++)
	{
		cout<<a[i]<<' ';
	}
	cout<<endl;
}
inline void dfs(int i)//现在是第i层,也可以看成是第i个盒子,把数据放到这个盒子里 
{
	int j;
	if(i==n+1)//如果到达了第n+1层说明已经搜索完成,输出 
	{
		print();//输出方案
		return;//返回上一层(上一个盒子)
	}
	for(j=1;j<=n;j++)//开始放数据 
	{
		if(b[j]==0)//这个数可以放(未标记) 
		{
			a[i]=j;//放这个数 
			b[j]=1;//标记被放过了 
			dfs(i+1);//放第i+1个盒子(层) 
			b[j]=0;//返回之前一步,回溯 
		}
	}
}
int main()
{
	ios::sync_with_stdio(false);
	cin>>n;
	dfs(1);//开始深搜 
	return 0;
}

通过一个例子我们发现,dfs也就那回事。还是开头那句话:理解深搜的重要关键点是在于解决“现在该怎么做”。至于“接下来该怎么做”和“现在该怎么做”是一样的(这在骗分中十分重要)。比如上述程序的dfs(step)就是当你在第step个盒子前你应该怎么做。通常应该用循环把每一种可能都试一遍,当这步解决后就处理下一步[dfs(step+1)]。

下面是dfs的模版。

inline void dfs(int step)
{
	判断边界
	开始尝试每一种可能
	{
		...
		dfs(step+1);//继续下一步 
	} 
	return;//返回 
}

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值