数据可视化pythonexcel表格,python做可视化数据图表

本文介绍了如何使用Python的pandas、streamlit和plotly库处理Excel文件,通过Streamlit创建交互式Web应用,展示员工考核结果的柱状图和饼图。作者详细展示了数据读取、筛选和可视化的整个过程。
摘要由CSDN通过智能技术生成

这篇文章主要介绍了利用python处理excel文件并可视化处理,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。

Source code download: 本文相关源码

Python中有一个streamlit库,Streamlit 的美妙之处在于您可以直接在 Python 中创建 Web 应用程序,而无需了解 HTML、CSS 或 JavaScrip,今天我们就用streamlit来写一个把Excel表格内容转化成web可视化图表的程序。

准备工作:安装依赖库

  • pip install plotly
  • pip install streamlit
  • pip install pandas
  • pip install openpyxl
  • pip install Pillow

数据展示:

在这里插入图片描述

代码实现:

1.导入库

import pandas as pd
import streamlit as st
import plotly.express as px
from PIL import Image

2.读取数据

### --- 加载数据
excel_file = 'Survey_Results_2021.xlsx'#文件地址
sheet_name = 'DATA'#sheet名称


df = pd.read_excel(excel_file,
                   sheet_name=sheet_name,
                   usecols='B:D',#列取值范围
                   header=3)


df_participants = pd.read_excel(excel_file,
                                sheet_name= sheet_name,
                                usecols='F:G',
                                header=3)
df_participants.dropna(inplace=True)

3.网页设置

st.set_page_config(page_title='调查结果')#网页标题
st.title('2021员工考核结果') #标题
st.subheader('筛选条件')#子标题


# --- 筛选条件
department = df['部门'].unique().tolist() #部门列去重后结果
ages = df['年龄'].unique().tolist()


age_selection = st.slider('年龄:',
                        min_value= min(ages),
                        max_value= max(ages),
                        value=(min(ages),max(ages)))


department_selection = st.multiselect('部门:',
                                    department,
                                    default=department)


# --- 基于条件筛选的过滤
mask = (df['年龄'].between(*age_selection)) & (df['部门'].isin(department_selection))
number_of_result = df[mask].shape[0]
st.markdown(f'*参与人数: {number_of_result}*')


# --- 筛选后的数据
df_grouped = df[mask].groupby(by=['评分']).count()[['年龄']]
df_grouped = df_grouped.rename(columns={'年龄': "人数"})
df_grouped = df_grouped.reset_index()


# --- 柱状图
bar_chart = px.bar(df_grouped,
                   x='评分',
                   y='人数',
                   text='人数',
                   color_discrete_sequence = ['#F63366']*len(df_grouped),
                   template= 'plotly_white')
st.plotly_chart(bar_chart)


# --- 展示图片和数据
col1, col2 = st.beta_columns(2)
image = Image.open('images/wx.png')
print(image)
col1.image(image,
        caption='关注公众号,更多有趣内容等你发现',
        use_column_width=True)
col2.dataframe(df[mask], width=480, height=400)


# --- PLOT PIE CHART
pie_chart = px.pie(df_participants,
                title='参与人数分布概况',
                values='参与人数',
                names='部门统计')


st.plotly_chart(pie_chart)

4.运行(需要cmd或者终端到py文件路径下运行)

streamlit run app.py

在这里插入图片描述

5.展示效果(执行步骤4后会自动弹出默认浏览器窗口,也可以直接访问上图中的地址)

在这里插入图片描述

年龄支持滑动选择,部门支持多选,最终筛选两个条件下的数据来展示

在这里插入图片描述

感兴趣的小伙伴可以参考上面的代码和数据自行实践一下,对于不会编程的小伙伴,我会在明天用工具来给大家展示一下如何快速实现数据可视化

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划学习python用什么书好。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

👉Python必备开发工具👈

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述

在这里插入图片描述

这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值