P1014 [NOIP1999 普及组] Cantor 表 题解

21 篇文章 1 订阅
本文探讨了三种高效算法来解决一个关于数列的问题,包括模拟枚举、Z字形斜线快速枚举、以及利用二分法寻找第n项的所在位置。算法2.5和3分别通过更巧妙的方法降低时间复杂度至O(√n)和O(㏒₂n),适用于大规模数据n≤10^14和n≤10^18。
摘要由CSDN通过智能技术生成

算法1:模拟,按题意一个个枚举

时间复杂度O(n),可以通过本题n≤10^7

算法2:发现Z字形的每条斜线可以快速枚举,即枚举

1/1 , 1/2 , 3/1 , 1/4 , 5/1 , 1/6……找到要求的第n项所在斜线,再一个个枚举或计算得出答案

时间复杂度O(√n),可以通过n≤10^14

算法2.5:枚举第n项在哪一行,计算得出答案,比算法2好写,

时间复杂度同算法2

算法3:发现第i条斜线(即分子分母之和=i+1的所有项)中包含i*(i-1)/2+1至i*(i+1)中的每一项,所以可以二分分子分母之和,再根据分子分母之和的奇偶性直接计算第n项

时间复杂度O(㏒₂n),可以通过n≤10^18,加上高精可通过n≤10^1000

二分参考代码:

  #include<iostream>
    #include<cmath>
    using namespace std;
    int main(){
        long long l=1,r,mid,n,a;
        cin>>n;
        r=n;
        while(l<r){
            mid=(l+r)/2;
            if(mid*(mid+1)/2<n)l=mid+1;
            else r=mid;
        }
        a=n-l*(l-1)/2;
        if(l%2==0)cout<<a<<'/'<<l+1-a;
        else cout<<l+1-a<<'/'<<a;
        return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值