P11558 [ROIR 2016] 和谐数列

题目背景

翻译自 ROIR 2016 D2T4

题目描述

如果一个整数数列 a1,a2,…,ana1​,a2​,…,an​ 满足其中每个数(除了 a1​ 和 an)等于其相邻两个数的和,即 a2=a1+a3,a3=a2+a4,…,an−1=an−2+an​,那么我们称这个序列为和谐数列。

例如,数列 [1,2,1,−1][1,2,1,−1] 是和谐数列,因为 2=1+12=1+1,且 1=2+(−1)1=2+(−1)。

现在考虑两个相同长度的数列 A=[a1,a2,…,an]和 B=[b1,b2,…,bn]。我们定义它们之间的距离为:

d(A,B)=∣a1−b1∣+∣a2−b2∣+⋯+∣an−bn∣

例如,d([1,2,1,−1],[1,2,0,0])=∣1−1∣+∣2−2∣+∣1−0∣+∣−1−0∣=0+0+1+1=2

现有一个数列 B=[b1,b2,…,bn]B=[b1​,b2​,…,bn​],需要找出一个和谐数列 A=[a1,a2,…,an],使得 d(A,B)d(A,B) 最小。你只需要求出 d(A,B) 的最小值即可。

输入格式

第一行输入一个整数&nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值