深度学习
文章平均质量分 93
一些论文阅读和模型代码
procoder338
github:https://github.com/drowning-in-codes
展开
-
【大模型微调实战】使用Peft技术与自己的数据集微调大模型
LLM是大型语言模型的缩写,是人工智能和机器学习领域的最新创新。2022年12月,随着ChatGPT的发布,这种强大的新型人工智能在网上疯传。对于那些足够开明的人来说,生活在人工智能的嗡嗡声和科技新闻周期之外,ChatGPT是一个在名为GPT-3的LLM上运行的聊天界面。最近的大模型就是Meta的llama2当然还有openai的GPT4,google的PaLM2.国内有清华的ChatGLM等等.原创 2023-11-01 10:15:08 · 6554 阅读 · 0 评论 -
本地使用LLM的方法总结
就目前而言, Ollama或者GPT4All是绝对够用的,上面三个工具选择一个即可. 如果想要在服务器上提供API也是不错的.原创 2024-04-26 20:39:25 · 1006 阅读 · 4 评论 -
深度学习中的图像融合:图像融合论文阅读与实战
介绍图像融合概念,回顾sota模型,其中包括数字摄像图像融合,多模态图像融合,接着评估一些代表方法介绍一些常见应用,比如RGBT目标跟踪,医学图像检查,遥感监测。原创 2023-11-19 14:06:07 · 4311 阅读 · 0 评论 -
【深度学习下载大型数据集】快速下载谷歌云盘数据集
跑深度学习的时候,一些数据集比较大,比如60多个G,而且只是训练集.然后这些数据是由某些实验室组采集的,并不像一些大公司搞的,一般都直接方法一些网盘中.如果是谷歌网盘,本身通过代理也不麻烦,但是发现即使通过代理,下载的速度也非常慢,如果频繁下载还会被限制.这里给一个方法,通过租赁廉价服务器下载谷歌云盘的数据集,然后自己再通过公网下载.速度要快一些.我通过IDM下载谷歌云盘上的大型数据集时速度低的时候可能才五六百KB,使用这种方法20多G的数据40s左右下载到服务器上。原创 2024-01-02 18:01:20 · 2020 阅读 · 1 评论 -
注意力与transformer:位置编码与vision transfomer
介绍注意力机制与transfomer模型,特别关注相对位置编码以及一种vision transformer的而变形原创 2024-02-19 15:46:04 · 959 阅读 · 0 评论 -
想要炼自己的模型?GPU服务器不完全测评
由于本人没有合适的GPU服务器训练模型(没钱买服务器),只能在网上租了.原创 2023-10-25 13:38:59 · 388 阅读 · 0 评论 -
从论文中看AI绘画
主要看是看Diffusion Models,CLIP,ControlNet,IP-Adapter这种经典论文,尝试总结论文写作的一些方式以及图像生成模型的一些内在思想. 对于其中的数学原理和代码不过深究.原创 2024-05-05 16:27:50 · 947 阅读 · 0 评论 -
[计算机视觉] 目标检测学习
得到2000个区域proposals后,CNN充当特征提取器,并且输出密集层由从图像中提取的特征组成,并且提取的特征被馈送到SVM中以对该候选区域提议内的对象的存在进行分类。虽然对于图像分类,很容易测量算法的性能,但对于对象检测,我们需要测量类的正确性以及推断的边界框位置的精度。对于两个相同的区域,IoU将是1,而对于完全不相交的区域,它将是0。在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。原创 2023-10-23 17:48:10 · 296 阅读 · 0 评论