想要炼自己的模型?GPU服务器不完全测评

个人博客:Sekyoro的博客小屋
个人网站:Proanimer的个人网站

由于本人没有合适的GPU服务器训练模型(没钱买服务器),只能在网上租了.

我的评价标准:

  1. GPU要求,这个要看具体论文或者情况.需要用什么GPU就用什么的,否则太好的价格承担不起.
  2. 价格便宜
  3. 需要有及时回复问题的客服
  4. 最好是国外服务器(或者能方便连外网,不然一些数据集什么的不好获取)
  5. 自带的镜像版本要多,一定程度的定制化,不然一个python版本或者pytorch的版本跑不了
  6. 有单独的存储服务,而不是每次都去服务器上运行下载命令.存储空间要大,因为一般数据集可能很大(一两百多个G)
  7. 加分点:能直接使用网盘,这样就不用每次去下载数据集了.

国内

国内我就只推荐autodl.

AutoDL

4090和V100都有,介个不贵,关键是支持阿里和百度网盘传数据.

image-20231024225120243

**实例连续关机15天会释放实例,实例释放会导致数据清空且不可恢复,释放前实例在数据在。**也支持所谓学术资源加速,在访问github和huggingface的之后能正常访问.

此外还有所谓省钱绝招AutoDL帮助文档

  1. 有无卡模式用于编写/调试代码、上传下载数据到实例、给他人做代码展示等不需要GPU卡场景时,这个时候价格0.1元/时,这个很人性化.
  2. 随时升降配置开始仅需要1块GPU进行代码调试和性能验证,但是调试完成后为了加速训练需要使用多卡并行
  3. 不确定自己的代码需要执行多久结束,希望执行完成后立马关机。这类场景可以通过shutdown

AutoDL可以通过ssh和jupyter

在代码最后加上os.system(‘shutdown’),然后使用nohup等命令挂在后台运行,代码运行完就会自动关机停止计费。

国外

国外的很多都需要绑定国外信用卡,很多都不支持国内支付宝.

Vast.ai

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

主打的便宜,我一般用4090人民币2元多一小时,有的服务器是支持jupyter notebook有的只能使用ssh连接,这需要自己去修改一下配置

在这里插入图片描述

vast.ai也支持类似autodl无卡机制,可以先把机子stop了(数据会保留,但后面不一定能用上该机器了,如果用不上可以拷贝数据到其他机子上).

paperspace

8美元1个月,感觉还行,有免费额度(但不一定能抢得到)

存储空间支持的云服务商包括DO,亚马逊,还不包括谷歌云盘

image-20231025125027673

Lambda

可以租赁的GPU类型特别多,价格一般

在这里插入图片描述

界面不错,感觉应该是一众网站中的质量较高的GPU服务器商了.

JarvisLabs

在这里插入图片描述

我自己没用过,但是看周围评价说是不错的,而且对AI绘画和llm chat也有支持
在这里插入图片描述
如果你对之前的AI绘图感兴趣,我推荐RunDiffusion](https://app.rundiffusion.com/)和Think Diffusion: Stable Diffusion in the Cloud
除此之外还有国内外大厂的,比如国外微软谷歌亚马逊,国内腾讯百度阿里,这种租赁GPU服务器的都有,质量是肯定可以保障的,不过价格啥的应该要贵一点,而且一些操作比较繁琐(我用过微软和亚马逊的服务器(学生服务),整个价格介绍啥的都很多、繁琐)

目前setup

先用google colab测试,如果机子不太行经常断连,尝试上autodl或者vast.ai

存在问题

主要是网络问题以及存储数据问题,比如我想下载一共200G左右在谷歌云盘的数据集到服务器.

如果使用国内的服务器,这不太行,本身无法访问谷歌,如果自己搭建代理可能更麻烦

如果用国外服务器,我尝试过vast.ai的谷歌云盘功能,很多时候不太行.只能自己在服务器上使用命令行下载,这样挂着下载又要花一笔钱.实用工具gdown,gdrive等,不过gdown下载文件还有限制…

或者自己下载到本地再传上去,这是最简单也最笨的方法.

如有疑问,欢迎各位交流!

服务器配置
宝塔:宝塔服务器面板,一键全能部署及管理
云服务器:阿里云服务器
Vultr服务器
GPU服务器:Vast.ai

### 回答1: 训练模型一般需要以下步骤: 1. 准备训练数据: 这通常包括收集和标记数据、将数据分成训练集和验证集、并将数据加载到计算机中。 2. 选择模型: 这可能是一个预先训练好的模型,也可能是从头开始训练的模型。 3. 设置训练参数: 这包括学习率、优化器、批大小和其他超参数。 4. 开始训练: 这通常是在计算机的 GPU 上进行的,因为这样能够加快训练速度。训练期间,模型将使用训练数据进行学习,并不断更新其权重以尽可能准确地预测输出。 5. 评估模型: 在训练结束后,通常会使用验证数据来评估模型的准确性。 用 GPU 训练出来的模型可以在不使用 GPU 的情况下使用,但是它的运行速度可能会变慢。如果您的计算机没有 GPU 或者您想在其他设备上使用训练好的模型,则可能需要将模型转换为不依赖 GPU 的形式。 ### 回答2: 训练模型是一个迭代的过程,需要准备数据、设计模型架构、选择合适的优化算法和损失函数,并利用GPU进行加速计算。以下是训练模型的一般步骤: 1. 数据准备:收集并清理数据集,进行预处理操作,如数据归一化、特征选择、数据增强等。 2. 模型架构设计:选择合适的模型类型,如卷积神经网络(CNN)用于图像相关任务,循环神经网络(RNN)用于序列数据处理等。根据任务需求,设计合适的网络结构,包括层数、激活函数、损失函数等。 3. 优化算法和损失函数选择:根据任务类型选择合适的优化算法,如梯度下降、Adam等,并选择适当的损失函数来评估模型的性能。 4. 模型训练:将准备好的数据输入到模型中,通过反向传播算法计算误差,并利用优化算法更新模型参数。这是一个迭代的过程,可以设置合适的迭代次数或停止条件。 使用GPU进行模型训练可以大幅提升训练速度,因为GPU具备并行计算能力,能够同时处理多个计算任务。同时,GPU还提供了深度学习框架的支持,如TensorFlow、PyTorch等,可以更方便地进行模型的搭建和训练。 训练好的模型可以不依赖GPU进行使用,但可能会受到性能限制。GPU主要用于加速计算,在推理阶段(即使用模型进行预测时),模型的参数已经固定,不需要进行梯度计算,因此GPU的加速优势不再明显。可以使用CPU进行推理过程,但CPU的计算速度相比GPU较慢,可能会导致推理速度变慢。对于较大的模型或复杂的任务,仍然可能需要GPU进行推理加速。 ### 回答3: 训练模型是指通过提供大量数据和相应标签,以及选择合适的算法和参数来让计算机学会从数据中提取特征以及预测结果的过程。下面是一个训练模型的一般步骤: 1. 数据准备:收集、整理、筛选和清洗数据集,确保数据集的质量和正确性。 2. 特征选择和提取:根据实际问题和数据集,选择适当的特征并进行提取,将数据转换为可供模型使用的格式。 3. 模型选择和构建:根据问题的特性选择适合的机器学习算法(如决策树、神经网络等),搭建模型结构,然后初始化参数。 4. 模型训练:将数据输入模型,通过反向传播算法或其他优化算法不断调整模型参数,使模型能够逐渐适应数据集。 5. 模型评估和优化:使用测试集对模型进行评估,计算模型的准确性、精确度、召回率等指标,并根据评估结果对模型进行调整和改进。 针对是否可以在非GPU环境下使用GPU训练出的模型,一般来说是可以的。训练模型时使用GPU主要是因为GPU在并行计算方面的优势,可以加速计算过程。训练完成后,模型本身并不依赖于训练时使用的硬件设备,只需要根据模型要求的计算能力选择相应的硬件。因此,当获得训练好的模型后,可以在不同的设备和环境中使用,而不一定需要GPU。但需要注意的是,在非GPU环境下运行模型时可能会面临性能下降的问题,因为某些模型可能需要大量的计算资源才能达到较好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

procoder338

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值