想要炼自己的模型?GPU服务器不完全测评

个人博客:Sekyoro的博客小屋
个人网站:Proanimer的个人网站

由于本人没有合适的GPU服务器训练模型(没钱买服务器),只能在网上租了.

我的评价标准:

  1. GPU要求,这个要看具体论文或者情况.需要用什么GPU就用什么的,否则太好的价格承担不起.
  2. 价格便宜
  3. 需要有及时回复问题的客服
  4. 最好是国外服务器(或者能方便连外网,不然一些数据集什么的不好获取)
  5. 自带的镜像版本要多,一定程度的定制化,不然一个python版本或者pytorch的版本跑不了
  6. 有单独的存储服务,而不是每次都去服务器上运行下载命令.存储空间要大,因为一般数据集可能很大(一两百多个G)
  7. 加分点:能直接使用网盘,这样就不用每次去下载数据集了.

国内

国内我就只推荐autodl.

AutoDL

4090和V100都有,介个不贵,关键是支持阿里和百度网盘传数据.

image-20231024225120243

**实例连续关机15天会释放实例,实例释放会导致数据清空且不可恢复,释放前实例在数据在。**也支持所谓学术资源加速,在访问github和huggingface的之后能正常访问.

此外还有所谓省钱绝招AutoDL帮助文档

  1. 有无卡模式用于编写/调试代码、上传下载数据到实例、给他人做代码展示等不需要GPU卡场景时,这个时候价格0.1元/时,这个很人性化.
  2. 随时升降配置开始仅需要1块GPU进行代码调试和性能验证,但是调试完成后为了加速训练需要使用多卡并行
  3. 不确定自己的代码需要执行多久结束,希望执行完成后立马关机。这类场景可以通过shutdown

AutoDL可以通过ssh和jupyter

在代码最后加上os.system(‘shutdown’),然后使用nohup等命令挂在后台运行,代码运行完就会自动关机停止计费。

国外

国外的很多都需要绑定国外信用卡,很多都不支持国内支付宝.

Vast.ai

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

主打的便宜,我一般用4090人民币2元多一小时,有的服务器是支持jupyter notebook有的只能使用ssh连接,这需要自己去修改一下配置

在这里插入图片描述

vast.ai也支持类似autodl无卡机制,可以先把机子stop了(数据会保留,但后面不一定能用上该机器了,如果用不上可以拷贝数据到其他机子上).

paperspace

8美元1个月,感觉还行,有免费额度(但不一定能抢得到)

存储空间支持的云服务商包括DO,亚马逊,还不包括谷歌云盘

image-20231025125027673

Lambda

可以租赁的GPU类型特别多,价格一般

在这里插入图片描述

界面不错,感觉应该是一众网站中的质量较高的GPU服务器商了.

JarvisLabs

在这里插入图片描述

我自己没用过,但是看周围评价说是不错的,而且对AI绘画和llm chat也有支持
在这里插入图片描述
如果你对之前的AI绘图感兴趣,我推荐RunDiffusion](https://app.rundiffusion.com/)和Think Diffusion: Stable Diffusion in the Cloud
除此之外还有国内外大厂的,比如国外微软谷歌亚马逊,国内腾讯百度阿里,这种租赁GPU服务器的都有,质量是肯定可以保障的,不过价格啥的应该要贵一点,而且一些操作比较繁琐(我用过微软和亚马逊的服务器(学生服务),整个价格介绍啥的都很多、繁琐)

目前setup

先用google colab测试,如果机子不太行经常断连,尝试上autodl或者vast.ai

存在问题

主要是网络问题以及存储数据问题,比如我想下载一共200G左右在谷歌云盘的数据集到服务器.

如果使用国内的服务器,这不太行,本身无法访问谷歌,如果自己搭建代理可能更麻烦

如果用国外服务器,我尝试过vast.ai的谷歌云盘功能,很多时候不太行.只能自己在服务器上使用命令行下载,这样挂着下载又要花一笔钱.实用工具gdown,gdrive等,不过gdown下载文件还有限制…

或者自己下载到本地再传上去,这是最简单也最笨的方法.

如有疑问,欢迎各位交流!

服务器配置
宝塔:宝塔服务器面板,一键全能部署及管理
云服务器:阿里云服务器
Vultr服务器
GPU服务器:Vast.ai

### 使用 PAI-DLC 进行模型训练 PAI-DLC 提供了一种高效的方式来进行分布式机器学习任务,特别是针对大规模数据集和复杂模型架构。通过该平台可以简化从环境配置到模型训练的过程。 #### 配置计算资源 在启动任何训练作业之前,需先定义所需的计算资源配置。这包括选择合适的实例类型以及指定GPU数量等硬件参数[^1]。 ```json { "machine_type": "ecs.gn6v-c8g1.2xlarge", "gpu_count": 4, "image_id": "ubuntu_1804_x64_20G_alibase_20200729.vhd" } ``` #### 准备训练代码与依赖项 确保所有的Python包和其他软件依赖都已正确安装,并打包成Docker镜像或直接上传至OSS存储桶中以便于后续加载使用。对于特定版本控制下的库文件,则建议采用虚拟环境来管理这些外部依赖关系[^2]。 #### 编写并提交训练任务 编写一个包含主要逻辑的入口脚本(如`train.py`),并通过API接口向PAI-DLC服务端发起请求创建新的训练会话。此过程中还需要提供必要的超参设置、输入路径以及其他辅助信息作为参数传递给远程服务器处理。 ```bash pai dlc create \ --name my-training-job \ --code-url oss://bucket/path/to/code/ \ --data-url oss://bucket/path/to/data/ \ --output-url oss://bucket/path/to/output/ ``` #### 实时监控进度 一旦训练过程正式启动之后,即可借助内置的日志查看器或者其他可视化工具实时跟踪当前状态变化情况;同时也可以定期保存checkpoint用于后期恢复中断的任务继续执行下去。 #### 结果分析与评估 当整个流程结束后,下载最终产出物并对预测性能进行全面评测。如果有必要的话还可以进一步调整算法结构或是优化现有方案直至达到预期目标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

procoder338

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值