机器学习入门
arag2009
这个作者很懒,什么都没留下…
展开
-
A Practical Introduction to Deep Learning with Caffe
A Practical Introduction to Deep Learning with Caffe and PythonDeep learning is the new big trend in machine learning. It had many recent successes in computer vision, automatic speech recognition转载 2017-01-23 16:15:09 · 2096 阅读 · 0 评论 -
运行caffe自带的两个简单例子
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载。但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了。注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错1、mnist实例mnist是一个手写数字库,由DL大牛Yan LeCun进行维护。mnist最初用于支票上的手写数字转载 2017-01-24 10:07:36 · 424 阅读 · 0 评论 -
[FaceDetect]基于Caffe的人脸检测实现
来自: http://blog.csdn.net//chenriwei2/article/details/503210850. 引言深度学习可以说是在人脸分析相关领域遍地开花,近年来在人脸识别,深度学习在人脸检测,人脸关键点检测中有很广泛的应用,这篇文章中,初步实现了基于深度学习CNN的人脸检测。1. 方法讨论深度学习一般没有进行直接的检测,现有的检测大多都是基转载 2017-01-24 10:40:09 · 4209 阅读 · 0 评论 -
Caffemodel解析
因为工作需要最近一直在琢磨Caffe,纯粹新手,写博客供以后查阅方便,请大神们批评指正!Caffe中,数据的读取、运算、存储都是采用Google Protocol Buffer来进行的,所以首先来较为详细的介绍下Protocol Buffer(PB)。PB是一种轻便、高效的结构化数据存储格式,可以用于结构化数据串行化,很适合做数据存储或 RPC 数据交换格式。它可用于通讯协议、数据转载 2017-01-24 14:40:54 · 1873 阅读 · 0 评论 -
scikit-learn学习之SVM算法
一:我对SVM的理解先介绍一些简单的基本概念分隔超平面:将数据集分割开来的直线叫做分隔超平面。超平面:如果数据集是N维的,那么就需要N-1维的某对象来对数据进行分割。该对象叫做超平面,也就是分类的决策边界。间隔:一个点到分割面的距离,称为点相对于分割面的距离。转载 2017-05-09 11:07:53 · 1681 阅读 · 0 评论 -
使用scikit-learn进行机器学习的简介(教程1)
一、机器学习:问题设定通常,一个学习问题是通过分析一些数据样本来尝试预测未知数据的属性。如果每一个样本不仅仅是一个单独的数字,比如一个多维的实例(multivariate data),也就是说有着多个属性特征我们可以把学习问题分成如下的几个大类:(1)有监督学习数据带有我们要预测的属性。这种问题主要有如下几种:①分类样例属于两类或多类,我们想转载 2017-05-10 11:11:31 · 501 阅读 · 0 评论 -
从理论到实践,手把手教你如何用 TensorFlow 实现 CNN
一、CNN的引入在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个;若输入的是28×28 带有颜色的R转载 2017-05-10 16:55:54 · 3427 阅读 · 2 评论 -
【机器学习算法实现】kNN算法__手写识别——基于Python和NumPy函数库
转自:http://blog.csdn.net/u012162613/article/details/41768407【机器学习算法实现】系列文章将记录个人阅读机器学习论文、书籍过程中所碰到的算法,每篇文章描述一个具体的算法、算法的编程实现、算法的具体应用实例。争取每个算法都用多种语言编程实现。所有代码共享至github:https://github.com/wepe/Mach转载 2017-05-09 15:26:32 · 596 阅读 · 0 评论 -
神经网络+深度学习+增强学习
神经网络+深度学习+增强学习神经网络像飞机的灵感来源于鸟类,雷达的灵感来源于蝙蝠,红外线的灵盖来源于蛇,而本文要讨论的神经网络灵感来源于我们自己,人类大脑的神经元结构。从神经元结构被提出,到时下火热的无以复加的深度神经网络,发展过程也可为一波三折。我们按照时间的顺序,对一些经典的神经网络模型进行整理:M-P模型40年代初心理学家 W.W.Mcculloch 和梳理逻转载 2017-01-23 14:32:20 · 9325 阅读 · 0 评论