OpenCV
文章平均质量分 86
arag2009
这个作者很懒,什么都没留下…
展开
-
OpenCV与OpenGL
一:为何引入 OpenGL?在 2.3 之前 OpenCV 的渲染部分都是由 CPU 来实现的,不论是画线还是把图片显示到屏幕上。这有两个问题,速度慢,同时没法画三维物体。引入 OpenGL 是为了借助 显卡的力量,显卡比 CPU 更擅长渲染,同时显卡和 CPU 可以同时干活。比方说,CPU 在获取摄像头画面然后检测人脸时,显卡在渲染三维的人脸网格模型和高精度抗锯齿的二维界面。另外转载 2017-03-21 11:38:41 · 4807 阅读 · 0 评论 -
图像特征提取三大算法:HOG特征,LBP特征,Haar特征
(一)HOG特征 from:http://dataunion.org/20584.html1、HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤转载 2017-03-21 10:49:21 · 65778 阅读 · 3 评论 -
OpenCV实现SfM(三):三维重建+Bundle Adjustment
Bundle Adjustment在上一篇文章中,成功将三维重建扩展到了任意数量的图像,但是,随着图像的增多,累计误差会越来越大,从而影响最终的重建效果。要解决这个问题,需要用到Bundle Adjustment(下文简称BA)。 BA本质上是一个非线性优化算法,先来看看它的原型 minx∑iρi(||fi(xi1,xi2,...,xik)||2)其中x是我们需要优转载 2017-09-20 15:00:20 · 3320 阅读 · 0 评论 -
OpenCV实现SfM(二):多目三维重建
上一次学习了双目三维重建,这次来学习基于多目的三维重建。首先,为了简化问题,我们要做一个重要假设:用于多目重建的图像是有序的,即相邻图像的拍摄位置也是相邻的。求第三个相机的变换矩阵由前面的文章我们知道,两个相机之间的变换矩阵可以通过findEssentialMat以及recoverPose函数来实现,设第一个相机的坐标系为世界坐标系,现在加入第三幅图像(相机),如何确定第三个相转载 2017-09-20 09:32:07 · 4554 阅读 · 9 评论 -
【opencv】相机模型与相机标定
相机标定:每个摄像机都有唯一的参数,例如,焦点,主点以及透镜的畸变模型。查找摄像机内参数差的过程为摄像机的标定;对基于增强现实的应用来讲,对摄像机标定很重要,因为它将透视变换和透镜的畸变都反映在输出图像上。为了让用户在增强现实应用中获得更佳的体验,应该用相同的透视投影来增强物体的可视化效果;标定摄像机需要特殊的模式图像,例如:棋盘板或具有白色背景的黑圆圈,被标定的摄像机需要从不同的角度对特转载 2017-04-20 14:32:57 · 3775 阅读 · 0 评论 -
OpenGL与OpenCV实现增强现实小程序
该程序通过OpenCV实现对Marker的识别和定位,然后通过OpenGL将虚拟物体叠加到摄像头图像下,实现增强现实转载 2017-10-30 14:59:15 · 1314 阅读 · 0 评论 -
OpenCV实现SfM(一):双目三维重建(包含SIFT特征点提取)
三维重建是指根据基于一个视图或者多个视图所获得的物体或者场景的图像重建三维模型的过程。由于单视图的信息很单一,因此三维重建需要更复杂的算法和过程。相比之下,多视图的三维重建(模仿人类观察世界的方式)就比较容易实现,其方法是先对摄像机进行标定,即计算出摄像机的图像坐标系与世界坐标系的关系.然后利用多个二维图像中的信息重建出三维信息转载 2017-09-19 11:37:52 · 24135 阅读 · 6 评论 -
特征点检测:FAST and SIFT
特征点检测和匹配是计算机视觉中一个很有用的技术。在物体检测,视觉跟踪,三维常年关键等领域都有很广泛的应用。这一次先介绍特征点检测的一种方法——FAST(features from accelerated segment test)。很多传统的算法都很耗时,而且特征点检测算法只是很多复杂图像处理里中的第一步,得不偿失。FAST特征点检测是公认的比较快速的特征点检测方法,只利用周围像素比较的信息就可以得到特征点,简单,有效。FAST特征检测算法来源于corner的定义,这个定义基于特征点周围的图像灰度值,检测原创 2017-11-03 17:11:47 · 1754 阅读 · 0 评论