信号与系统ch5[采样与恢复]

§ 5 \S 5 §5 采样与调制

5.1 采样定理

  • 沟通连续和离散的桥梁

表述:

x ( t ) x(t) x(t) 是某一带限信号,即 ∣ w ∣ > w M |w|>w_M w>wM X ( j w ) = 0 X(jw)=0 X(jw)=0

如果采样频率 w s > 2 w M w_s>2w_M ws>2wM ,其中 w s = 2 π / T s w_s=2\pi/T_s ws=2π/Ts T s T_s Ts 为采样周期。

那么: x ( t ) x(t) x(t) 就由其 样本值序列 x [ n ] = x ( n T s ) ,   n ∈ Z x[n]=x(nT_s),\ n \in Z x[n]=x(nTs), nZ 唯一确定。

(必须大于,等于是不能完全恢复的,,)

证明步骤一共三步:

x ( t ) →   F   X ( j w ) x p ( t ) = ∑ n = − ∞ + ∞ x ( n T ) δ ( t − n T ) →   F   1 T ∑ n = − ∞ + ∞ X ( j ( w − k w s ) ) x [ n ] = x ( n T ) →   F   X p ( j w T ) x(t)\xrightarrow{\ F\ }X(jw)\\ x_p(t)=\sum_{n=-\infty}^{+\infty}x(nT)\delta(t-nT)\xrightarrow{\ F\ }\frac1T\sum_{n=-\infty}^{+\infty}X(j(w-kw_s))\\ x[n]=x(nT)\xrightarrow{\ F\ }X_p(j\frac wT) x(t) F  X(jw)xp(t)=n=+x(nT)δ(tnT) F  T1n=+X(j(wkws))x[n]=x(nT) F  Xp(jTw)

上式中第二步:
∵ x p ( t ) = ∑ n = − ∞ + ∞ x ( n T ) δ ( t − n T ) = x ( t ) [ ∑ n = − ∞ + ∞ δ ( t − n T ) ] ⇒ x ( t ) p ( t ) ∴ X p ( j w ) = 1 2 π X ( j w ) ∗ P ( j w ) ∵ a k = 1 T ∫ T x ( t ) e − j w t d t = 1 T ∫ T δ ( t ) d t = 1 T ∴ p ( t ) = 1 T ∑ k = − ∞ + ∞ e j k w s t →   F   P ( j w ) = 2 π T ∑ k = − ∞ + ∞ δ ( w − k w s ) ∴ X p ( j w ) = 1 2 π ∗ [ 2 π T ∑ k = − ∞ + ∞ δ ( w − k w s ) ] = 1 T ∑ n = − ∞ + ∞ X ( j ( w − k w s ) ) \because x_p(t)=\sum_{n=-\infty}^{+\infty}x(nT)\delta(t-nT)=x(t)[\sum_{n=-\infty}^{+\infty}\delta(t-nT)]\Rightarrow x(t)p(t)\\ \therefore X_p(jw)=\frac1{2\pi}X(jw)*P(jw)\\ \because a_k=\frac1T \int_Tx(t)e^{-jwt}dt=\frac1T\int_T\delta(t)dt=\frac1T \\ \therefore p(t)=\frac1T\sum_{k=-\infty}^{+\infty}e^{jkw_st}\xrightarrow{\ F\ }P(jw)=\frac{2\pi}T\sum^{+\infty}_{k=-\infty}\delta(w-kw_s)\\ \therefore X_p(jw)=\frac1{2\pi}*[\frac{2\pi}T\sum_{k=-\infty}^{+\infty}\delta(w-kw_s)]=\frac1T\sum_{n=-\infty}^{+\infty}X(j(w-kw_s)) xp(t)=n=+x(nT)δ(tnT)=x(t)[n=+δ(tnT)]x(t)p(t)Xp(jw)=2π1X(jw)P(jw)ak=T1Tx(t)ejwtdt=T1Tδ(t)dt=T1p(t)=T1k=+ejkwst F  P(jw)=T2πk=+δ(wkws)Xp(jw)=2π1[T2πk=+δ(wkws)]=T1n=+X(j(wkws))

用到了: δ \delta δ 函数的性质,调制性质,周期函数的傅里叶变换

第三步:
∵ X ( e j w ) = ∑ n = − ∞ + ∞ x [ n ] e − j w n = ∑ n = − ∞ + ∞ x ( n T ) e − j w n ∵ X p ( j w ) = ∫ − ∞ + ∞ x p ( t ) e j w t d t = ∫ − ∞ + ∞ [ ∑ n = − ∞ + ∞ x ( n T ) δ ( t − n T ) ] e − j w t d t = ∑ n = − ∞ + ∞ x ( n T ) [ ∫ − ∞ + ∞ δ ( t − n T ) e − j w t d t ] = ∑ n = − ∞ + ∞ x ( n T ) [ ∫ − ∞ + ∞ δ ( t − n T ) e − j w n T d t ] = ∑ n = − ∞ + ∞ x ( n T ) e − j w n T ∴ X ( e j w ) = X p ( j w T ) \because X(e^{jw})=\sum_{n=-\infty}^{+\infty}x[n]e^{-jwn}=\sum_{n=-\infty}^{+\infty}x(nT)e^{-jwn}\\ \because X_p(jw)=\int_{-\infty}^{+\infty} x_p(t)e^{jwt}dt=\int_{-\infty}^{+\infty}[\sum_{n=-\infty}^{+\infty}x(nT)\delta(t-nT)]e^{-jwt}dt\\=\sum_{n=-\infty}^{+\infty}x(nT)[\int_{-\infty}^{+\infty} \delta(t-nT)e^{-jwt}dt]=\sum_{n=-\infty}^{+\infty}x(nT)[\int_{-\infty}^{+\infty} \delta(t-nT)e^{-jwnT}dt]\\=\sum_{n=-\infty}^{+\infty}x(nT)e^{-jwnT}\\ \therefore X(e^{jw})=X_p(j\frac wT) X(ejw)=n=+x[n]ejwn=n=+x(nT)ejwnXp(jw)=+xp(t)ejwtdt=+[n=+x(nT)δ(tnT)]ejwtdt=n=+x(nT)[+δ(tnT)ejwtdt]=n=+x(nT)[+δ(tnT)ejwnTdt]=n=+x(nT)ejwnTX(ejw)=Xp(jTw)

5.2 带限内插公式

已知 X p ( j w ) X_p(jw) Xp(jw) ,恢复 X ( j w ) X(jw) X(jw)
x ( t ) = x p ( t ) ∗ T s i n ( w 0 t ) π t = T [ ∑ n = − ∞ + ∞ x ( n T ) δ ( t − n T ) ] ∗ s i n ( w o t ) π t = T ∑ n = − ∞ + ∞ x ( n T ) s i n [ w 0 ( t − n T ) ] π ( t − n T ) = T π ∑ n = − ∞ + ∞ x [ n ] s i n [ w 0 ( t − n T ) ] t − n T x(t)=x_p(t)*T\frac{sin(w_0t)}{\pi t}\\=T[\sum_{n=-\infty}^{+\infty}x(nT)\delta(t-nT)]* \frac{sin(w_ot)}{\pi t}\\=T\sum_{n=-\infty}^{+\infty}x(nT)\frac{sin[w_0(t-nT)]}{\pi(t-nT)}\\=\frac T\pi\sum_{n=-\infty}^{+\infty}x[n]\frac{sin[w_0(t-nT)]}{t-nT} x(t)=xp(t)Tπtsin(w0t)=T[n=+x(nT)δ(tnT)]πtsin(wot)=Tn=+x(nT)π(tnT)sin[w0(tnT)]=πTn=+x[n]tnTsin[w0(tnT)]
上述推导公式称为:低通内插公式 w 0 w_0 w0 是低通滤波器的截止频率。

同理可得 带通内插公式
x ( t ) = T π ∑ n = − ∞ + ∞ x [ n ] s i n [ w 0 ( t − n T ) ] t − n T c o s [ w s ( t − n T ) ] x(t)=\frac T\pi\sum_{n=-\infty}^{+\infty}x[n]\frac{sin[w_0(t-nT)]}{t-nT}cos[w_s(t-nT)] x(t)=πTn=+x[n]tnTsin[w0(tnT)]cos[ws(tnT)]
上式中: w s w_s ws 是采样频率,此时能恢复出和低通内插公式一样的结果。

5.3 零阶、一阶保持及其恢复

5.3.1 零阶保持

零阶保持采样 x 0 ( t ) x_0(t) x0(t) :若采样周期为 T s T_s Ts ,则
x 0 ( t ) = { x ( k T s ) t ∈ [ k T s , k T s + τ ] ,   k ∈ Z 0 o t h e r w i s e x_0(t)= \left \{ \begin{array}{lr} x(kT_s) & t\in[kT_s, kT_s+\tau],\ k\in Z\\ 0 & otherwise \end{array} \right. x0(t)={x(kTs)0t[kTs,kTs+τ], kZotherwise
发现 x 0 ( t ) = x p ( t ) ∗ [ u ( t ) − u ( t − τ ) ] x_0(t)=x_p(t)*[u(t)-u(t-\tau)] x0(t)=xp(t)[u(t)u(tτ)]

所以 X 0 ( j w ) = X p ( j w ) ⋅ τ S a ( τ w 2 ) e − j π 2 w X_0(jw)=X_p(jw)\cdot \tau Sa(\frac{\tau w}2)e^{-j\frac\pi2w} X0(jw)=Xp(jw)τSa(2τw)ej2πw

最后得出:
X ( j w ) = X 0 ( j w ) τ S a ( τ w 2 ) ⋅ e j π 2 w ⋅ [ u ( t + w 0 ) − u ( t − w 0 ) ] X(jw)=\frac{X_0(jw)}{\tau Sa({\frac{\tau w}2})}\cdot e^{j\frac\pi2w}\cdot [u(t+w_0)-u(t-w_0)] X(jw)=τSa(2τw)X0(jw)ej2πw[u(t+w0)u(tw0)]

5.3.2 一阶保持

一阶保持是相邻采样点用线段相邻。

这时 x 1 ( t ) x_1(t) x1(t) 则是 x p ( t ) x_p(t) xp(t) 卷积 [ − T , T ] [-T,T] [T,T] 上的单位三角波。

得出 X 1 ( j w ) = X p ( j w ) ⋅ T S a 2 ( τ w 2 ) X_1(jw)=X_p(jw)\cdot TSa^2(\frac{\tau w}2) X1(jw)=Xp(jw)TSa2(2τw)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值