32、遥感多光谱场景分析:从规则构建到实际应用

遥感多光谱场景分析:从规则构建到实际应用

1. 多光谱场景特征与规则基础

1.1 类别到背景特征

在遥感多光谱场景分析中,类别到背景特征是基于这样的观察:土地覆盖类别通常比周围属于其他类别的像素更亮或更暗。该特征通过类别像素与正常背景响应之间的对比度梯度来定义,并且为每个光谱带定义了约束梯度的符号。

1.2 规则创建

在构建基于知识的分割系统时,并非所有规则都支持二元决策。大多数情况下,规则的前提条件可能只是部分满足,即使前提条件完全满足,结果也可能是模糊的。为了表示场景的领域知识,使用以下三种类型的知识规则或约束:
- 强制约束 :描述属于某个类别的所有像素应满足的光谱特性,代表目标类别的一般特征。
- 可选约束 :描述属于某个类别的一组像素应满足的光谱特性。
- 矛盾约束 :描述与某个类别相矛盾的光谱特性。

这些知识规则可以用三个参数来表示,即约束、支持权重和反对权重。支持和反对权重与每个目标类相关联,约束用于规则验证,根据每个像素反射值的局部分布进行评估。权重决定了给定约束在支持或反对某个类别时所提供证据的相对重要性。具体的权重更新规则如下:
|约束类型|约束验证情况|支持权重|反对权重|
| ---- | ---- | ---- | ---- |
|强制约束|验证通过|增加| - |
|强制约束|验证不通过| - |增加|
|可选约束|验证通过|增加| - |
|可选约束|验证不通过| - |增加|
|矛盾约束|验

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值