1053. Path of Equal Weight (30)

本文深入探讨了等权路径问题的解决方案,采用深度优先搜索(DFS)算法寻找所有权重等于给定值的路径。通过具体实现代码,详细介绍了如何在给定节点数量、边数量及目标权重的情况下,构建图结构并进行DFS遍历,最终输出所有符合条件的路径。适用于算法学习者及编程爱好者。

1053. Path of Equal Weight (30)
考察DFS

#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <algorithm>
using namespace std;
int n,m,s;
vector<int> w;
vector<vector<int>> v,ans;
void solve(int r,int sum,vector<int> &rp)
{
    if(v[r].size()==0&&sum==s)
    {
        ans.push_back(rp);
        return;
    }
    for(auto x:v[r])
    {
        rp.push_back(w[x]);
        solve(x,sum+w[x],rp);
        rp.pop_back();
    }
}
int main(int argc, char const *argv[])
{
    cin>>n>>m>>s;
    v.resize(n);
    w.resize(n);
    for(int i=0;i<n;++i)
        cin>>w[i];
    for(int i=0;i<m;++i)
    {
        int id,k,idx;
        cin>>id>>k;
        for(int j=0;j<k;++j)
        {
            cin>>idx;
            v[id].push_back(idx);
        }
    }
    vector<int> rp;
    rp.push_back(w[0]);
    solve(0,w[0],rp);
    sort(ans.begin(),ans.end(),greater<vector<int>>());
    for(auto xv:ans)
    {
        for(unsigned int i=0;i<xv.size();++i)
            i!=xv.size()-1?cout<<xv[i]<<" ":cout<<xv[i]<<endl;
    }
    return 0;
}

转载于:https://www.cnblogs.com/xLester/p/7570357.html

内容概要:本文介绍了悬臂梁的有限元分析方法,重点采用多重网格高斯-赛德尔迭代法对有限元方程进行求解,并提供了完整的Matlab代码实现。文中详细阐述了有限元法的基本原理、网格划分策略、刚度矩阵组装、边界条件处理以及多重网格加速技术在提升高斯-赛德尔迭代效率方面的应用,有效提高了数值求解的收敛速度和计算效率。该方法适用于结构力学中的静态位移与应力分析,具有较强的工程应用价值。; 适合人群:具备有限元理论基础和Matlab编程能力的力学、土木、机械等工程领域研究生或科研人员;从事结构仿真与数值计算相关工作的技术人员;希望深入理解多重网格加速算法在工程问题中应用的学者。; 使用场景及目标:①掌握悬臂梁结构的有限元建模流程;②理解并实现高斯-赛德尔迭代法及其多重网格加速技术;③悬臂梁的有限元分析,采用多重网格高斯-赛德尔方法求解(Matlab代码实现)通过Matlab编程实践提升对数值方法与结构分析耦合机制的认识;④为复杂结构的高效求解提供可复用的算法框架与代码参考。; 阅读建议:建议读者结合有限元教材同步学习,先理解基本理论再调试代码,重点关注刚度矩阵的构建与边界条件施加方式,并尝试调整网格密度和材料参数以观察对结果的影响,从而深化对数值稳定性和精度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值