HBase入门:各组件详细介绍

HBase是一个基于HDFS的分布式列式数据库,提供高并发、实时读写的NoSQL解决方案。其特点是列式存储、动态列扩展、多版本数据和灵活的数据模型。HBase适用于半结构化数据、稀疏数据、多版本数据场景。通过行键、列簇、列修饰符和时间戳定位数据,实现高效存储。在容错机制中,HMaster和HRegionServer通过Zookeeper协调,确保集群稳定性。
摘要由CSDN通过智能技术生成

简介:

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。

是 Apache Hadoop 的数据库,是建立在 HDFS 之上,被设计用来提供高可靠性、高性能、列存储、可伸缩、多版本的 NoSQL的分布式数据存储系统,实现对大型数据的实时、随机的读写访问。

特点:

HBase 依赖于 HDFS 做底层的数据存储,BigTable 依赖 Google GFS 做数据存储

HBase 依赖于 MapReduce 做数据计算,BigTable 依赖 Google MapReduce 做数据计算

HBase 依赖于 ZooKeeper 做服务协调,BigTable 依赖 Google Chubby 做服务协调

下图描述Hadoop EcoSystem中的各层系统。其中,HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。

此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

BI:商业智能化,报表                   RDBMS:传统数据库

Zookeeper:协作                        Avro:反序列化

基础是HDFS文件系统                

Hbase是将hdfs封装,引入列式存储,最终还是存储在HDFS

HBase存在block

应用场景:

1、半结构化或非结构化数据

对于数据结构字段不够确定或杂乱无章很难按一个概念去进行抽取的数据适合用 HBase。而且 HBase 是面向列的,HBase 支持动态增加字段

2、记录非常稀疏

RDBMS 的行有多少列是固定的,为 null 的列浪费了存储空间。而 HBase 为 null 的 Column是不会被存储的,这样既节省了空间又提高了读性能。

3、多版本数据

对于需要存储变动历史记录的数据,HBase 根据 Row key 和Column key 定位到的 Value 可以有任意数量的版本值。

4、超大数据量的随机、实时读写

HBase 会自动水平切分扩展,跟 Hadoop 的无缝集成保障了其数据可靠性(HDFS)和海量数据分析的高性(MapReduce)

当数据量越来越大,RDBMS 数据库撑不住了,就出现了读写分离策略,通过一个 Master 专门负责写操作,多个 Slave 负责读操作,服务器成本倍增。随着压力增加,Master 撑不住了,这时就要分库了,把关联不大的数据分开部署,一些 join 查询不能用了,需要借助中间层。随着数据量的进一步增加,一个表的记录越来越大,查询就变得很慢,于是又得搞分表,比如按 ID 取模分成多个表以减少单个表的记录

5、查询简单

不涉及到复杂的 Join 查询,基于 RowKey 或者 RowKey 的范围查询

为什么要用Hbase?

1.HBase是基于HDFS分布式文件系统去构建的。换句话说,HBase的数据其实也是存储在HDFS上的。

2.HBase可以以低成本来存储海量的数据并且支持高并发随机写和实时查询

3.HBase还有一个特点就是:存储数据的”结构“可以地非常灵活

Hbase和HDFS的区别

HDFS是文件系统,而HBase是数据库「可以把HBase当做是MySQL,把HDFS当做是硬盘。HBase只是一个NoSQL数据库,把数据存在HDFS上」。

HBase在HDFS之上提供了高并发的随机写和支持实时查询,这是HDFS不具备的。

对比其他组件

MySQL

  • MySQL数据库我们是算用得最多了的吧?但众所周知,MySQL是单机的。MySQL能存储多少数据,取决于那台服务器的硬盘大小。以现在互联网的数据量,很多时候MySQL是没法存储那么多数据的。
  • 比如我这边有个系统,一天就能产生1TB的数据,这数据是不可能存MySQL的。(如此大的量数据,我们现在的做法是先写到Kafka,然后落到Hive中)
  • ------------------------------------------------------------------------------------------------------------------------------------------------------

Kafka

  • Kafka我们主要用来处理消息的(解耦异步削峰)。数据到Kafka,Kafka会将数据持久化到硬盘中,并且Kafka是分布式的(很方便的扩展),理论上Kafka可以存储很大的数据。但是Kafka的数据我们
  • 不会「单独」取出来,持久化了的数据,最常见的用法就是重新设置offset,做「回溯」操作
  • ------------------------------------------------------------------------------------------------------------------------------------------------------

Redis

  • Redis是缓存数据库,所有的读写都在内存中,速度贼快。AOF/RDB存储的数据都会加载到内存中,Redis不适合存大量的数据(因为内存太贵了!)。
  • ------------------------------------------------------------------------------------------------------------------------------------------------------

Elasticsearch

  • Elasticsearch是一个分布式的搜索引擎,主要用于检索。理论上El
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值