简介
量子近似优化算法最早由Farhi等人于2014年提出,是利用量子计算机来近似解决组合优化问题的量子算法。
准备
需要额外安装networkx库。
相关内容流程
QAOA算法
第1步、搭建QAOA量子线路,其中ansatz线路包含可以训练的参数
第2步、初始化线路中的参数
第3步、运行该量子线路,得到量子态|𝜓〉|ψ〉
第4步、计算目标哈密顿量𝐻𝐶HC的期望值〈𝜓|𝐻𝐶|𝜓〉〈ψ|HC|ψ〉
第5步、根据第4步的结果,使用Adam优化器优化线路中参数
第6步、重复3-5步,直到第4步结果基本不再变化
第7步、根据第4步的结果,算出目标问题的近似解
相关流程图如下图所示:
方法
方法一:
利用传统优化算法完成优化搜索;
方法二:
利用 MindSpore 机器学习框架完成量子神经网络训练。