- 博客(25)
- 收藏
- 关注
原创 昇思MindSpore打卡营 11号 -在量子化学计算中应用量子变分求解器 学习心得
在高性能计算机上进行量子化学模拟已成为研究材料的物理、化学性质的重要手段。随着近年量子计算的发展,有望在量子计算机上实现多项式复杂度下对薛定谔方程的高精度求解。可以通过两种方法求解。方法一:利用MindSpore Quantum打包好的函数生成了能够解决该问题的量子神经网络;方法二:构造出了类似的梯度算子。最终得到结果一致。
2024-07-12 00:31:53 455
原创 昇思MindSpore打卡营 11号 -量子相位估计算法 学习心得
假设一个幺正算符 U,这个幺正算符作用在其本征态 |u〉 上会出现一个相位e2πiφ,假设 𝑈U 算符的本征值未知,也就是 φ 未知,但是 U 算符和本征态|u〉 已知,相位估计算法的作用就是对这个相位 φ 进行估计。
2024-07-11 23:59:41 209
原创 昇思MindSpore打卡营 11号 -量子神经网络在自然语言处理中的应用 学习心得
当给予神经网络的语料信息不断增加时,网络的训练过程将越来越困难。可以利用量子神经网络来处理这些经典语料信息,加入其训练过程,并提高收敛精度。
2024-07-11 23:50:47 193
原创 昇思MindSpore打卡营 11号 -Pix2Pix实现图像转换 学习心得
Pix2Pix是由Phillip Isola等作者在2017年CVPR上提出的,基于条件生成对抗网络实现的一种深度学习图像转换模型。其包括两个模型:生成器和判别器。
2024-07-11 22:21:35 223
原创 昇思MindSpore打卡营 11号 -RNN实现情感分类 学习心得
情感分类属于分类问题的一种,简单来说就是输入一句话,能让机器识别出这句话所属的情感类型。
2024-07-11 21:53:12 141
原创 昇思MindSpore打卡营 11号 -保存与加载 学习心得
保存训练后的结果,以便后续加载用于微调和后续的模型推理与部署。MindIR同时保存了Checkpoint和模型结构,可以使用。接口加载MindIR模型,进行推理时,传入。接口,传入网络和指定的保存路径进行保存;方法加载参数,来进行加载模型权重。接口直接将模型保存为MindIR。创建相同模型的实例,然后使用。
2024-07-11 19:19:48 227
原创 昇思MindSpore打卡营 11号 -模型训练 学习心得
是可以调整的参数,可以控制模型训练优化的过程。一般会定义以下超参用于训练:一、训练轮次:训练时遍历数据集的次数。二、批次大小:数据集进行分批读取训练,设定每个批次数据的大小。需要选择合适的batch size,可以有效提高模型精度、全局收敛。三、学习率:梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。
2024-07-11 19:11:06 199
原创 昇思MindSpore打卡营 11号 -函数式自动微分 学习心得
自动微分主要解决的问题是:将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。
2024-07-11 18:06:16 232
原创 昇思MindSpore打卡营 11号 -网络构建 学习心得
神经网络模型是由神经网络层和Tensor操作构成的。在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。
2024-07-11 15:56:45 127
原创 昇思MindSpore打卡营 10号 -数据变换 Transforms 学习心得
MindSpore提供不同种类的数据变换(Transforms),所有的Transforms均可通过。直接加载的原始数据并不能直接送入神经网络进行训练,需要对其进行数据预处理。接收一个数据增强操作序列,然后将其组合成单个数据增强操作。可以加载任意定义的Lambda函数,提供足够的灵活度。提供一系列针对图像数据的Transforms。提供一系列针对文本数据的Transforms。方法传入,实现对指定数据列的处理。
2024-07-11 02:16:48 168
原创 昇思MindSpore打卡营 10号 -数据集 Dataset 学习心得
MindSpore提供基于Pipeline的数据引擎,Dataset是Pipeline的起始,用于加载原始数据。提供了内置的文本、图像、音频等数据集加载接口,并提供了自定义数据集加载接口。模块提供了一些常用的公开数据集和标准格式数据集的加载API,当遇到暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过接口实现自定义方式的数据集加载。
2024-07-11 02:06:53 357
原创 昇思MindSpore打卡营 10号 -张量 Tensor 学习心得
张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。它是一种特殊的数据结构,与数组和矩阵非常相似,它也是MindSpore网络运算中的基本数据结构。构造张量时,支持传入Tensorfloatintbooltuplelist和类型。当通过数据创建张量时,数据类型可以设置或者通过框架自动推断。张量可被init初始化器构造,也可以被继承后形成新的张量。张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。
2024-07-11 01:43:17 219
原创 昇思MindSpore打卡营 10号 -快速入门 学习心得
目的是:利用自动微分机制,自动求模型参数对于loss的梯度;下载完成之后,用mindspore.dataset对提供的数据进行预处理。目的是:模型预测结果,并与正确标签求预测损失;用上述代码可以实现下载并解压所需文件到指定位置,目的是:将梯度更新到参数上。方法,可以实现自定义网络。首先安装download。
2024-07-11 01:31:05 186
原创 昇思MindSpore打卡营 10号 -量子近似优化算法 学习心得
量子近似优化算法最早由Farhi等人于2014年提出,是利用量子计算机来近似解决组合优化问题的量子算法。
2024-07-10 23:51:23 163
原创 昇思MindSpore打卡营 10号 -基于MindSpore Quantum的Grover搜索算法和龙算法 学习心得
Grover搜索算法是一种利用量子状态的叠加性进行并行计算并实现加速的算法,于1996年被Lov Grover提出。它解决的是无序数据库搜索问题,是第一个被完整的实验实现的量子算法。无序数据库搜索问题就是从一个海量元素的无序数据库中,找到某些满足要求的元素。在求解无序数据库搜索问题中,Grover搜索算法相比经典算法具有平方加速。
2024-07-10 20:43:11 239
原创 昇思MindSpore打卡营 10号 -LSTM+CRF序列标注 学习心得
序列标注:指给定输入序列,给序列中每个Token进行标注标签的过程。它可以从文本中进行信息抽取,包括分词、词性标注、命名实体识别等。条件随机场:一种能够学习单个字之间关联关系的算法的模型,它能保证预测结果的正确性。
2024-07-10 20:10:40 161
原创 昇思MindSpore打卡营 10号 -Diffusion扩散模型 学习心得
Diffusion是从纯噪声开始,通过一个神经网络学习逐步去噪,最终得到一个实际图像。Diffusion对于图像的处理包括两个过程:一、选择的固定(或预定义)正向扩散过程 ,它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声;二、通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像。一、学习条件分布的方差(除平均值外)有助于提高性能;二、引入级联扩散,用于高保真图像合成;三、扩散模型通过改进U-Net体系结构以及引入分类器指导,可以获得优于当前最先进的生成模型的图像样本质量;
2024-07-10 18:36:22 156
原创 昇思MindSpore打卡营 10号 -DCGAN生成漫画头像 学习心得
DCGAN是GAN的直接扩展,最早由Radford等人在论文中提出,其中文名称为深度卷积对抗生成网络。它与GAN的不同之处在于,它会分别在判别器和生成器中使用卷积和转置卷积层。目的是最大程度地提高判别图像真伪的概率;当处理完数据后,按照DCGAN论文中的描述,所有模型权重均应从。目的是产生更好的虚假图像。生成器的功能是将隐向量映射到数据空间,该功能是通过一系列。函数将数据转换成字典迭代器,然后使用。为0.02的正态分布中随机初始化。模块来将部分训练数据可视化。该函数能对数据进行增强。转置卷积层来完成的。
2024-07-10 17:41:10 331
原创 昇思MindSpore打卡营 10号 -CycleGAN图像风格迁移互换 学习心得
CycleGAN实现了在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y,被称为循环对抗生成网络。CycleGAN相比于Pix2Pix,只需要两种域的数据,不需要他们有严格对应关系,它是一种新的无监督的图像迁移网络。
2024-07-10 17:26:24 192
原创 昇思MindSpore打卡营 9号 -Vision Transformer图像分类 学习心得
Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于具有计算效率和可扩展性,它已经能够训练具有超过100B参数的模型。ViT模型主要应用于图像分类领域。学习本案例我掌握了Multi-Head Attention,TransformerEncoder,pos_embedding等关键概念。
2024-07-10 01:08:11 317
原创 昇思MindSpore打卡营 9号 -SSD目标检测 学习心得
Wei Liu在ECCV 2016上提出了SSD这种目标检测算法,使用Nvidia Titan X在VOC 2007测试集上,SSD对于300x300的网络和512x512的网络,超越当时最强的Faster RCNN。SSD采用了多尺度检测方法,浅层用于检测小目标,深层用于检测大目标。它是单阶段的目标检测算法,是一种多尺度的检测方法。
2024-07-10 00:17:41 294
原创 昇思MindSpore打卡营 9号 -ResNet50图像分类 学习心得
2015年,微软实验室的何恺明提出了ResNet50网络,ResNet50网络的残差网络结构,减弱了传统的卷积神经网络堆叠到一定深度时出现的退化问题。图(1)由图(1)可见,传统卷积神经网络在CIFAR-10数据集上,56层网络训练比20层网络训练误差和测试误差更大。图(2)由图(2)可见,在CIFAR-10数据集上,ResNet网络层数越深,其训练误差和测试误差越小。
2024-07-09 18:45:01 299
原创 昇思MindSpore打卡营 9号 -FCN图像语义分割 学习心得
FCN主要用于图像分割领域,因其网络所有层均为卷积层,故称为全卷积网络。全卷积神经网络主要使用卷积化、上采样、跳跃结构三种技术。FCN的进步之处在于:提出使用全卷积层,通过学习让图片实现端到端分割。相比于CNN,它可以接受任意大小的输入图像,并且更加高效。FCN的待改进之处在于:第一、得到的结果仍不够精细第二、没有充分考虑像素与像素之间的关系来对各个像素进行分类,因此缺乏空间一致性。
2024-07-09 18:10:24 263
原创 昇思MindSpore打卡营 9号 -ResNet50迁移学习 学习心得
可通过此代码将下载数据集,并将数据集解压到当前目录下的datasets-Canidae中,便于使用。训练模型的时候,可以使用固定特征进行训练,为了不在反向传播中计算梯度,可以设置。预训练后训练模型,相比于未进行过预训练直接训练模型,速度提升明显。通过此行代码指定下载来源url之后。
2024-07-09 17:47:30 467
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人