作者:李琼琼 (山东大学)
Stata 连享会: 知乎 | 简书 | 码云 | CSDN | StataChina公众号
连享会计量方法专题……,https://gitee.com/arlionn/Course
1. Tobit 模型的介绍
1.1 受限数据:截断和截堵
在做回归时,连续型的被解释变量有的时候因为截断 (Truncated) 或者截堵 (Censored) 而只能选取一定范围的值, 会导致估计量不一致。Davidson 等 (2004) 定义如果一些观测值被系统地从样本中剔除,称为 截断; 而没有观测值被剔除,但是有部分观测值被限制在某个点上则被称为 截堵。
举个例子,在研究影响家庭负债额的决定因素时,有较多的被解释变量 (负债额) 为 0,有些家庭是因为没有欠债也没有借钱给其他家庭回答负债为 0,也有家庭只借钱给其他家庭 (借钱给其他人负债额为负值),但是后者没有在数据上反映出来。 当研究人员只选择负债大于 0 的样本,此时负债额是 截断变量; 若研究人员保留了负债大于等于 0 的样本,此时的负债额为 截堵变量。 我们将上述情形统称为 受限因变量 (limited dependent variable),对应地就衍生出 「截断回归模型」 (truncated regression models) 和 「截堵回归模型」(censored regression models)。文献中,后者的别名还包括:「归并回归模型」和「审查回归模型」。
上述关于负债的例子属于 左侧受限,也可以将其推广到 右侧受限 (比如样本的负债额不能超过 100 万元) 或 双侧受限 (限定负债额在 0 到 100 万元之间) 的情形。
1.2 Tobit 模型设定
对于截堵数据,当左侧受限点为 0 ,无右侧受限点时,此模型就是所谓的「规范审查回归模型」,又称为 Tobit 模型 (Tobin,1958)。模型设定如下:
y i ∗ = x i ′ β + u i u i ∼ N ( 0 , σ 2 ) \begin{aligned} y_{i}^{*} &=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}+u_i \\ u_{i} & \sim N\left(0, \sigma^{2}\right) \end{aligned} yi∗ui=xi′β+ui∼N(0,σ2)
y i = { y i ∗ if y i ∗ > 0 0 if y i ∗ ⩽ 0 y_{i}=\left\{\begin{array}{cl}{y_{i}^{*}} & {\text { if } y_{i}^{*}>0} \\ {0} & {\text { if } y_{i}^{ *}\leqslant0}\end{array}\right. yi={ yi∗0 if yi∗>0 if yi∗⩽0
当潜变量 y ∗ y^{*} y∗ 小于等于 0 时,被解释变量 y y y 等于 0; 当 y ∗ y^{*} y∗ 大于 0 时,被解释变量 y y y 等于 y ∗ y^{*} y∗ 本身,同时假设扰动项 u i u_i ui 服从均值为 0 ,方差为 σ 2 \sigma^{2} σ2 正态分布。
1.3 Tobit 模型的估计
由于使用 OLS 对整个样本进行线性回归,其非线性扰动项将被纳入扰动项中,导致估计不一致,Tobit 提出用 MLE 对模型进行估计。
我们先对该混合分布的概率密度函数进行推导, 再写出其对数似然函数。
当 y i = 0 y_i = 0 yi=0 时,
P ( y i = 0 ∣ x i ) = P ( y i ∗ < 0 ∣ x i ) = P ( u i < − x i ′ β ∣ x i ) = P ( u i / σ < − x i ′ β / σ ∣ x i ) = Φ ( − x i ′ β / σ ) \begin{aligned} \mathrm{P}(y_i=0 | \mathbf{x_i}) &=\mathrm{P}\left(y_i^{*}<0 | \mathbf{x_i}\right)=\mathrm{P}(u_{i}<-\mathbf{x_i}^{\prime} \boldsymbol{\beta} | \mathbf{x_i}) \\ &=\mathrm{P}(u_{i}/ \sigma<-\mathbf{x_i}^{\prime} \boldsymbol{\beta} / \sigma | \mathbf{x_i})=\Phi(-\mathbf{x_i}^{\prime} \boldsymbol{\beta} / \sigma)\end{aligned} P(yi=0∣xi)=P(yi∗<0∣xi)=P(ui<−xi′β∣xi)=P(ui/σ<−xi′β/σ∣xi)=Φ(−x