全文阅读:https://www.lianxh.cn/news/4154505c0dfd6.html
目录
1. 引言
异方差自相关一直是计量经济学领域非常重要的问题。在过去的 20 年里,学者们在异方差自相关稳健(HAR)推论方面取得了很大的进展,尤其是发展出了固定平滑渐近理论(Kiefer & Vogelsang,2005; Sun,2014a)。相较于传统递增平滑渐近近似(卡方近似、正态近似),固定平滑渐近近似被证明更为精确(Jansson,2004; Sun, Philips $ Jin,2008)。 但在实证估计中,固定平滑渐近近似却没有被广泛采用。这主要是因为:
- 基于核方差估计的固定平滑渐近分布是非标准的分布,因此必须模拟临界值;
- 没有对应的 Stata 命令实现这种近似。
为此,Ye & Sun (2018) 提供了两对新的估计命令和估计后检验命令来解决这一问题。 这两对命令分别为:
har
和hart
命令gmmhar
和gmmhart
命令
本文以 Ye & Sun (2018) 为基础,介绍它们的适用场景、优势和使用方法。相关理论推导和证明参见原文:
Xiaoqing Ye, Yixiao Sun, 2018, Heteroskedasticity- and Autocorrelation-robust F and t Tests in Stata, Stata Journal, 18(4): 951–980. -PDF-, -PDF2-