不用太关心控制变量,真的!

原文链接:https://www.lianxh.cn/news/77d0128e722e7.html

不用太关心控制变量,即使符号不合预期也没太大关系,真的!

[source]: Hünermund P, Louw B. On the Nuisance of Control Variables in Regression Analysis[J]. arXiv preprint arXiv:2005.10314, 2020. -Link-


目录

在回归分析中,我们经常会引入「控制变量」来更好的评估自变量和因变量之间的因果关系。在这篇文章中,我们认为控制变量本身是不具有因果解释的。因此,我们建议在实证研究论文的结果部分「不要讨论其边际效应」。

1. 引言

多元回归分析 (multivariate regression) 是战略管理和经济学实证研究中的重要工具。这种方法通过引入控制变量来缓解混杂变量对因果效应估计的干扰。尽管控制变量在因果推断中处在一个很重要的地位,但在实证研究中,学者经常夸大其作用。

在本文中,我们认为:虽然控制变量对于因果关系的识别至关重要,但其本身通常不具有结构性解释。即使是有效的控制变量,也常常会与其他未观察到 (或不能观测到) 的因素(unobserved factors)关联,从因果推断的角度来看,这使得它们的边际效应无法解释 (Westreich 和 Greenland,2013; Keele等,2020)。因此,研究人员应考虑在解释其分析结果时完全忽略它们。

然而,在研究中,从控制变量中得出实质性结论的现象很普遍,例如,「控制变量的影响符合预期」 、「在结果中,我们的控制变量的结果值得注意」 等表述。具体来看,我们对近五年来在 Strategic Management Journal 上使用参数回归模型的论文进行了分析,发现有近 47% 的文章明确讨论了控制变量的估计效果。

此外,审稿人也经常会以「尽管这些控制变量并不是分析的主要重点,但他们仍然可以提供有价值的信息」为依据,要求论文作者提供控制变量系数的经济解释的情况。

### 如何在SmartPLS中设置和使用控制变量 在结构方程建模工具 SmartPLS 中,控制变量用于排除其他因素对模型的影响,从而更精确地评估主要变量间的关系。以下是具体操作指南: #### 控制变量的概念 控制变量是指那些可能影响因变量但在研究中是关注焦点的因素。为了确保模型的有效性和准确性,在分析过程中应当考虑并加入这些变量。 #### 添加控制变量到测量模型 当构建路径图时,可以直接将控制变量作为外生潜变量引入,并与其他观测变量一样连接至相应的指标项。这一步骤允许软件识别哪些数据应该被当作额外的信息加以考量[^3]。 #### 设置路径关系 对于每一个希望作为控制因子的外部变量,需建立从该节点指向所有内生(即目标)潜变量的单向箭头。这样做意味着告诉算法:尽管我们关心这个特定链接背后的具体机制,但仍要将其效应纳入整体估计之中。 ```plaintext // 假设 "Age" 是一个控制变量, "Performance" 和 "Satisfaction" 是两个内生潜变量. Path Age -> Performance; Path Age -> Satisfaction; ``` #### 解读结果报告中的控制效果 完成上述配置之后运行计算流程,则最终输出里会包含有关所加控件作用大小的数据摘要。注意审查标准化系数及其显著性水平(p-value),以此判断各个控制器是否确实起到了预期的作用;如果某些项目显得无关紧要甚至误导,则可以在后续迭代中移除它们重新测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值