Stata:数据包络分析(DEA)

原文链接:https://www.lianxh.cn/news/6ce6a8adb0c89.html

编者按: 这是 「连享会 - 效率分析专题」 的前期预习资料,以便大家对 DEA 有所了解。在下一期中,介绍 「各类全要素生产率 TFP 的测算方法」

目录

 

 


1. 数据包络分析 (DEA) 简介

数据包络分析 (DEA) 是由美国著名运筹学家 A.Charnes (查恩斯) 、W.W.Cooper (库铂) 、E.Rhodes (罗兹) 于 1978 年首先提出,在相对效率评价概念基础上发展起来的一种非参数检验方法。

在 DEA 中,受评估的单位或组织被称为决策单元 (简称 DMU) 。DEA 通过选取决策单元的多项投入和产出数据,利用线性规划,以最优投入与产出作为生产前沿,构建数据包络曲线。其中,有效点会位于前沿面上,效率值标定为 1;无效点则会位于前沿面外, 并被赋予一个大于 0 但小于 1 的相对的效率值指标。

DEA 模型具体又可细分为三种类型:

  • CCR 模型:该模型假定规模报酬不变,主要用来测量技术效率;
  • BCC 模型:该模型假定规模报酬可变,主要测算纯技术效率,即技术效率与规模效率的比值;
  • DEA-Malmquist 指数模型:该模型可以测算出决策单元 (DMUs) 的生产效率在不同时期的动态变化情况。

参考文献

  • Banker, R. D., A. Charnes, and W. W. Cooper. (1984) Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30: 1078–1092.[PDF]
  • Charnes, A., W. W. Cooper, and E. Rhodes. (1978) Measuring the Efficiency of Decision Making Units. European Journal of Operational Research 2: 429–444.[PDF]
  • Kyong-Rock Lee, and Byung-Ihn Leem. (2011) Malmquist Productivity Analysis Index using DEA frontier in Stata. The Stata Journal.[PDF]
  • Yong-bae Ji, and Choonjo Lee. (2010) Data Envelopment Analysis. Stata Journal, 10(2): 267–280. [PDF]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值